Papers

Peer-reviewed
Nov, 2020

Complex Network Representation of the Structure-Mechanical Property Relationships in Elastomers with Heterogeneous Connectivity

Patterns
  • Yoshifumi Amamoto
  • ,
  • Ken Kojio
  • ,
  • Atsushi Takahara
  • ,
  • Yuichi Masubuchi
  • ,
  • Takaaki Ohnishi

Volume
1
Number
8
First page
100135
Last page
100135
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1016/j.patter.2020.100135
Publisher
Elsevier BV

The complicated structure-property relationships of materials have recently been described using a methodology of data science that is recognized as the fourth paradigm in materials science. In network polymers or elastomers, the manner of connection of the polymer chains among the crosslinking points has a significant effect on the material properties. In this study, we quantitatively evaluate the structural heterogeneity of elastomers at the mesoscopic scale based on complex network, one of the methods used in data science, to describe the elastic properties. It was determined that a unified parameter with topological and spatial information universally describes some parameters related to the stresses. This approach enables us to uncover the role of individual crosslinking points for the stresses, even in complicated structures. Based on the data science, we anticipate that the structure-property relationships of heterogeneous materials can be interpretatively represented using this type of "white box" approach.

Link information
DOI
https://doi.org/10.1016/j.patter.2020.100135
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000653830900009&DestApp=WOS_CPL
ID information
  • DOI : 10.1016/j.patter.2020.100135
  • ISSN : 2666-3899
  • Web of Science ID : WOS:000653830900009

Export
BibTeX RIS