共同研究・競争的資金等の研究課題

2003年 - 2005年

〇次元ラティスイデアルの普遍グレブナー基底の探究

日本学術振興会  科学研究費助成事業  基盤研究(B)

課題番号
15340007
体系的課題番号
JP15340007
配分額
(総額)
8,600,000円
(直接経費)
8,600,000円

純粋数学と応用数学の両者に深く拘わる0次元ラティスイデアルの普遍グレブナー基底について、その代数的基礎理論を構築し、可換代数と代数幾何への理論的有効性とともに、整数計画、符号理論、統計数学などへの実践的有効性を多角的に探究することが当該基盤研究の申請書類作成段階における目的であった。当該基盤研究の研究成果を列挙する。第1に、有限グラフに付随するトーリックイデアルから得られる0次元ラティスイデアルの普遍グレブナー基底の具象的研究を展開し、その構造を有限グラフの言葉で記述することに成功した。第2に、有限グラフの整数計画問題にいわゆるGomoryのrelaxationと呼ばれる整数計画の技巧を使うことが可能なとき、最適解を探すための計算量を有限グラフの組合せ論を使って決定する研究を推進した。第3に、0次元ラティスイデアルのcorner polyhedronを有界な凸多面体と凸錐のMinkowski和として表示する研究を推進し、その多面体的諸性質についての顕著な結果が得られた。第4に、統計数学における分割表のマルコフ基底に関する代数的研究を展開し、完全多重グラフのトーリックイデアルに付随する統計モデルを提唱し、その統計学的な解析を遂行した。以上の研究成果は、整数計画問題の代数的な分析の展開に十分な貢献をする。他方、当該基盤研究においては、海外から著名な研究者を招聘し、2件の国際会議を開催した。それらは(1)可換代数と代数幾何(於、大阪大学)平成16年3月、(2)グレブナー基底の理論的有効性と実践的有効性(於、立教大学)平成17年8月、である。

リンク情報
KAKEN
https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-15340007
ID情報
  • 課題番号 : 15340007
  • 体系的課題番号 : JP15340007