論文

査読有り
2022年4月

Monodromies of splitting families for degenerations of Riemann surfaces

OSAKA JOURNAL OF MATHEMATICS
  • Takayuki Okuda

59
2
開始ページ
315
終了ページ
340
記述言語
英語
掲載種別
研究論文(学術雑誌)
出版者・発行元
OSAKA JOURNAL OF MATHEMATICS

When we study degenerations of Riemann surfaces from a topological viewpoint, the topological monodromies play a very important role. In this paper, as an analogy, we introduce the concept of "topological monodromies of splitting families" for degenerations of Riemann surfaces, and their "monodromy assortments". We show that the monodromy assortments of barking families associated with tame simple crusts act as a pseudo-periodic homeomorphism of negative twist on each irreducible component of the main fibers. As an application of our results, we show an interesting example of two splitting families for one degeneration that have different topological monodromies, although they give the same splitting.

リンク情報
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000787542000003&DestApp=WOS_CPL
ID情報
  • ISSN : 0030-6126
  • Web of Science ID : WOS:000787542000003

エクスポート
BibTeX RIS