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One of the regulated forms of cell death is the cell-in-cell (CIC) structure, in

which a surviving cell is engulfed by another cell, a mechanism that causes the

death of the engulfed cell by an adjacent cell. Several investigators have

previously shown that the presence of CICs is an independent risk factor

significantly associated with decreased survival in patients with various types of

cancer. In this review, we summarize the role of CIC in the tumor

microenvironment (TME), including changes and crosstalk of molecules and

proteins in the surrounding CIC, and the role of these factors in contributing to

therapeutic resistance acquisition. Moreover, CIC structure formation is

influenced by the modulation of TME, which may lead to changes in cellular

properties. Future use of CIC as a clinical diagnostic tool will require a better

understanding of the effects of chemotherapy on CIC, biomarkers for each CIC

formation process, and the development of automated CIC detection methods

in tissue sections of tumor specimens.

KEYWORDS
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1 Introduction

One of the regulated forms of cell death, entosis, called cell-in-cell (CIC) structures, in

which viable cells are internalized into other cells, has been reported for over a century. It is

a mechanism that targets cells for death following their engulfment by neighboring cells

(1). CIC structures also can result from different types of nonautonomous cell death, such

as entosis, cellular cannibalism, phagocytosis, encytosis, and emperipolesis. Entotic cells are

autonomously killed by engulfing them through autophagic protein-dependent lysosomal

digestion (2). Krajcovic et al. showed that entosis inhibited transformed growth by

inducing cell death. However, this process promotes aneuploidy in host cells (3) and
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facilitates nutrient recovery by engulfing cells that promote tumor

progression (4). Moreover, Wang et al. found that the presence of

CIC is an independent risk factor significantly associated with

decreased survival in patients with hepatocellular carcinoma,

especially in patients with low-grade, early-stage cancer (5). Other

studies have shown that the presence of CIC is associated with

advanced-stage cancer and that this phenomenon is associated with

genetic involvement (6).

The profile of CICs varies from tumor to tumor, which may

indicate different malignant stages or inflammatory states.

Phagocytosis is best known as the process by which one cell is

taken up by another. Phagocytosis generally targets dead, dying, or

pathogenic cells for engulfment and is driven by cytoskeletal

rearrangements of the host cell in response to signals from the

cell that are being taken up by the target cell. Target cells are then

typically degraded by lysosomal enzymes within one hour (7). Sun

et al. also described that entosis can act as a form of cellular

competition, where the engulfment of loser cells by neighboring

winners can promote clonal selection within heterogeneous tumor

cell populations, and the competition is driven by a mechanical

differences between softer and stiffer cells, where the stiffer cells are

eliminated by the softer cells (8). In contrast to phagocytosis, target

cells in CIC structures can be found inside apparently non-

phagocytic host cells that facilitate migration, division, and even

escape from internalization into the host cells (7). In 2007,

Overholtzer et al. reported that extracellular matrix detachment

in cancer cells promote CIC formation via contractile forces

associated with adhesive junction formation. This process

involves the junctional proteins E-cadherin and b-catenin and is

dependent on actomyosin contractility via Rho-associated coiled-

coil-containing protein kinase (ROCK) activity in the target cells

(1). This finding suggests target cell invasion as opposed to

engulfment and has been confirmed in several studies (9, 10).

The above studies indicate that CIC structure formation is

affected by modulation of the tumor microenvironment (TME),

which may lead to changes in cellular characteristics. In this

narrative review, we summarize the role of CIC in various cancer

treatment strategies, that is, the changes and crosstalk of molecules

and proteins surrounding CIC in the TME and the role of these

factors in contributing to therapeutic resistance acquisition.
2 CIC and mutant p53

In many human cancer cells, p53 is mutated, leading to p53

expression loss or expression of a mutant p53 protein (11). Mutant

p53 has been shown to not only lose wild-type function but also

gain oncogenic traits, such as invasion and metastasis (12, 13). A

previous study has indicated the role of mutant p53 in facilitating

CIC structure formation and promoting genomic instability. In

their xenograft mouse model, no growth advantage was found for

mutant p53 cells compared to p53 null cells, but the mixed

population of mutant p53 and p53 null cells had a growth

advantage and the highest number of CIC structures, indicating

that heterogeneity drives CIC formation (6). In addition to Tp53

mutations, Hayashi et al. reported that the genetic features of
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KRAS and Myc amplification were significantly associated with

entosis in human pancreatic ductal adenocarcinoma (PDAC)

tissues and were independently associated with a poor

prognosis (14).
3 CIC and inactivated CDKN2A

Another tumor suppressor involved in entosis is CDKN2A, a

cell cycle regulator and tumor suppressor gene in external cells.

Liang et al. reported that CDKN2A inactivation promoted entosis

and CDKN2A expression and was inversely correlated with CIC

formation in breast cancer (BC). Specifically, they found that

inhibiting CDKN2A effectively promoted homotypic CIC

formation, whereas ectopic overexpression of p16INK4a or

p14ARF, two proteins encoded by CDKN2A, significantly

suppressed CIC formation in MCF7 cells. Regulation of CIC

formation by CDKN2A is closely correlated with the subcellular

E-cadherin redistribution, F-actin rearrangement, and reduced

myosin light chain 2 (p-MLC2) phosphorylation, consistent with

the fact that CDKN2A expression imparts cell winner (outer cell)

identity in the cell competition assay (15). Moreover, expression of

KRASV12 and loss of CDKN2A have been reported to downregulate

myosin and thus cause outer cell deformability in CIC structures

(16). Overexpression of KRASV12 and c-Myc has also been reported

to promote the formation of CIC structures (8, 14, 17).

Therefore, entosis may cause the selection of “winner” tumor

cells that have acquired mutations in Myc, KRAS, CDKN2A, and

p53, leading to heterogeneity in the TME.
4 Molecular changes on surrounding
CIC in the TME

The molecular changes required for invasion can also be found

in entotic cells, including a rearranged cytoskeleton, ezrin

expression, and increased ROCK activity. Cano et al. suggested

that cannibalism, which they found to be ROCK- and b-catenin-
independent, coincided with the inability of cells to undergo TGF-

b-induced epithelial-to-mesenchymal transition (EMT) changes

required for pancreatic cancer metastasis. These data suggest a

pro-tumorigenic function for entosis and an anti-metastatic and

anti-tumorigenic function for cannibalism (18). Moreover, the

TME contains stromal cells, fibroblasts, and immune cells that

induce entosis and can be modulated by tumor cells to produce

large amounts of growth factors and cytokines (19).

Wang et al. reported the histochemical observation of

heterotypic CIC between epithelial cells and lymphocytes in a

wide range of colorectal tissues from colitis to colorectal cancer

(CRC). Furthermore, the formation of CIC structures was increased

in colorectal cancer tissues treated with high concentrations of the

inflammatory mediator IL-6 compared to those treated with low

concentrations of IL-6. These CIC structures are formed between

tumor cells and cytotoxic T cells mostly through emperitosis. In

addition, they found that IL-6 within the TME also promotes CIC

formation by upregulating the expression of the cell adhesion
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molecule ICAM1 and increases inner CD8+ T cell motility via the

activations of signal transducers and activators of transcription

(STAT)3/5, extracellular signal-related kinase (ERK), and Rho-

ROCK signaling pathways (20).

Furthermore, Ruan et al. reported that entosis was suppressed

by knockdown of IL-8 and significantly enhanced by recombinant

IL-8 treatment. This is related to the regulation of intercellular

adhesion and the expression of adhesion molecules by upregulation

of P-cadherin and g-catenin. It is well-known that IL-8 regulates the

inflammatory response. Then, neutrophils are recruited as

inflammatory cytokines that regulate entosis (21).

Overall, evidence on molecular changes has shown that the CIC

structure has specific effects on cell metabolism and cell death,

leading to tumor cell survival (Figure 1). These cellular and

molecular changes may lead to therapeutic resistance.
5 Evading from anti-cancer therapies

During cell division, a group of proteins, including RhoA and

myosin, cause cells to become rounder and stiffer. Durgan et al.

suggested that this allows dividing cells to force their way into other

cells, which is the first key stage of entosis. As cancer cells frequently

divide, this form of cell cannibalism may lead to the destruction of

cancer cells by their healthy neighboring cells. This reveals an

unexpected link between cell division and cannibalism, which is

relevant to both cancer progression and chemotherapy resistance

(22). The internalized cells may be protected from harmful

environmental factors, such as chemotherapy and other

unfavorable conditions induced by anticancer drugs, by endocytic

vacuoles formed within the host outer cell. The internalized cells

then leave the outer cells intact. This results in anti-cancer drug

therapy failure and cancer recurrence.

There are three major therapeutic strategies for cancer;

however, a certain percentage of these strategies are resistant,

and overcoming this is essential for improving the overall
Frontiers in Oncology 03
therapeutic effect of cancer treatments. Here, we summarize the

role of CICs in chemotherapy, radiation therapy, and

immunotherapy that result in cytotoxicity and discuss strategies

to overcome resistance to them.
5.1 Evading from Anti-cancer drugs

Cancer cell cannibalism induces transient polyploidy, thereby

facilitating cancer cell survival during anti-cancer therapy (23). In

BC, paclitaxel and taxol promoted mitotic rounding and induced

subsequent entosis in MCF7 cells (24). Resistance to chemotherapy

has been achieved by heterotypic cannibalism; Bartosh et al. showed

that heterotypic cannibalism (mesenchymal stem cell/mesenchymal

cell incorporation) may induce BC cell dormancy and make them

resistant to anti-cancer drug therapy (25). In prostate cancer (PC)

cells, entosis is an escape mechanism from the anti-cancer effects of

the tyrosine kinase inhibitor nintedanib. Entosis of PC cells by

nintedanib occurs via inhibition of phosphoinositide 3-kinase

(PI3K)/cell division cycle 42 (CDC42), followed by upregulation

of E-cadherin and ROCK signaling pathways (26). Wen et al.

identified that androgens also enhance entosis development and

play a negative role during PC progression by influencing entosis by

modulating the Rho/ROCK pathway (27). On the other hand, only

one study of pancreatic cancer has associated CIC structure with the

suppression of cancer metastasis, with evidence to the contrary for

other cancer types (18). Although there is no additional evidence as

to why only pancreatic cancer exhibits the above phenomenon, the

fate of entosis may be influenced by tumor cell interactions and the

TME, and the tumor extracellular matrix should always

be considered.

There is still a paucity of in vitro and in vivo biological evidence

as to whether CIC structures are truly chemotherapy- and targeted

therapy-resistant, and it is desirable to build more evidence for anti-

cancer treatment in the future. Therefore, it is necessary to establish

useful and easy markers for CIC evaluation.
FIGURE 1

The evading strategy of CIC from anti-cancer therapies.
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5.2 Evading from radiotherapy

Given the difficulty in establishing a CIC model, it remains

challenging to evaluate the therapeutic effect of radiation or its

resistance in tumor cells that form CICs in a strictly therapeutic

manner. An in vitro study reported that irradiation triggered and

promoted the formation of CICs. They indicated that decreased cell

viability and TME modulations caused by irradiation could trigger

non-professional phagocytosis (28). This result implies that tumor

cells shift to escape irradiation to protect themselves and rather

toward tumor progression. In contrast, using 601 human tissue

specimens from 147 BC patients who participated in an

institutional accelerated partial breast irradiation phase II trial,

the group reported that CIC-positive patients had a good

prognosis in terms of local recurrence-free and disease-free

survival, but a poor prognosis in terms of metastasis-free survival.

Furthermore, subgroup analysis indicated a correlation between a

high proliferation index and high CIC rates, with CIC having the

highest prognostic value in younger BC patients (29).

Schenker et al. investigated the contribution of CIC to the

prognosis of head and neck squamous cell carcinoma (HNSCC)

using pre- and post-radiochemotherapy (RCT) biopsy samples and

revealed that CIC is a significant predictor of overall survival in pre-

RCT biopsies but not in post-RCT biopsies. They speculated that

CICs impairs the production of damage-associated molecular

patterns (DAMPs) by capturing necrotic cells that inhibit an

adequate anti-tumor immune response, which is reflected in the

poor prognosis of patients with a high incidence of CIC (30).

In fact, the results of clinical studies sometimes do not agree

with those predicted from in vitro data, indicating that using CIC

alone as a direct predictor of prognosis for radiotherapy may not be

promising. Further in vivo studies will reveal the actual biology of

CIC formation in the TME, taking into consideration the

TME heterogeneity.
5.3 Evading from immunotherapy

Several authors have discussed that various engulfment

mechanisms resemble autophagy in cellular nutrition, in addition

to protecting tumor cells from immune surveillance and influencing

cancer development (31, 32). Gutwillig et al. investigated tumor

cells that evade immunotherapy by generating unique transient CIC

structures that are resistant to T cells and chemotherapy. They

showed that while the outer cells are often killed by reactive T cells,

the inner cells remain intact and disseminate into a single tumor cell

when T cells are no longer present. Moreover, this effect is mediated

primarily by IFNg-activated T cells, which then induce the

phosphorylation of the transcription factor STAT3 and early

growth response-1 (EGR-1) in tumor cells. Their work showed

the possibility of changing cold immune tumors to hot tumors (33).

Heterotypic CIC structures indicate the formation of CICs

between immune cells and tumor cells, which serve as a

mechanism of immune evasion that promotes cancer progression.

Choe et al. identified an association between heterotypic CIC
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structures and anti-cancer drug resistance in CICs formed from

NK and cancer cells. They reported three important findings: (i)

cancer cells forming heterotypic CICs showed lower reactivity to

NK cytotoxicity and higher proliferative capacity than non-CIC

cancer cells; (ii) after anti-cancer drug treatment, cancer cells

forming heterotypic CICs showed higher resistance to anticancer

drugs than non-CIC cancer cells; and (iii) more CIC structures were

observed in cancer cells treated with anti-cancer agents than in the

non-treated group. These results suggest an underlying mechanism

of immune evasion in heterotypic CICs and provide insight into

anti-tumor drug resistance in cancer cells (34). In addition, Su et al.

reported that CIC formation contributes significantly to the death

of host tumor cells, but not to the death of internalized immune

cells. This is a typical feature of NK cell-mediated killing and is

superior to typical methods that exhibit an extracellular cell-killing

approach. They identified CD44 on tumor cells as a negative

regulator of intracellular immune killing via inhibition of CIC

formation. Mechanistically, CD44 antagonizes NK cell

internalization by reducing N-cadherin-mediated intercellular

adhesion and enhancing Rho GTPase-regulated cell stiffness, and

blockade of CD44 signaling results in the suppressive effects of NK

cells on tumor growth associated with increased heterotypic CIC

formation. This result implicates the therapeutic target potential of

CIC as local immunotherapy (35). Figure 1 shows the relationship

between CIC and evasion of anti-cancer therapies.
6 Factors involved in the effectiveness
of antitumor immunity

CD68 plays a critical role in promoting cancer cell phagocytosis,

is upregulated in various types of cancer, and is a hallmark of poor

antitumor immunity and adverse prognosis. Zhang et al. focused on

CD68 expression in various types of cancer and reported that high

CD68 levels in tumor samples correlated with adverse prognosis in

glioblastoma, kidney renal clear cell carcinoma, lower-grade glioma,

hepatocellular carcinoma, lung squamous cell carcinoma, thyroid

carcinoma, and thymoma. Although the clinical prognosis and

immune infiltration associated with high CD68 expression levels

vary by tumor type, inhibition of CD68-dependent signaling may be

a promising therapeutic strategy for cancer immunotherapy (36).

Along with CD68, transmembrane protein TM9 is involved in

phagocytosis (37). Song et al. constructed a pancreatic cancer

prognostic model based on four CIC-related genes and showed

that the high-risk group had a worse prognosis, higher tumor

mutation burden, and lower immune cell infiltration than the

low-risk group. KRT7, the most important risk gene in this

model, was significantly associated with poor prognosis of

pancreatic cancer in the TCGA dataset, and their cohort

indicated that high KRT7 expression may be responsible for

immunosuppression in the pancreatic TME (38).

Wang et al. suggested that heterotypic CICs formed by CRC

cells and lymphocytes contribute to tumor escape from immune

surveillance, which can be facilitated by IL-6 and may represent a

previously undescribed pathway for tumor cells to evade host anti-
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tumor immunity. IL-6 in the TME also enhances tumor cell

autophagy and promotes tumor cell survival in CIC while

promoting the death of internalized lymphocytes (20). IL-6

inhibition may indirectly prevent CIC formation and eventually

improve prognosis (Figure 2).
7 Discussion

Some researcher have found entosis as a type of regulated cell

death debatable since the one keeps invading live cells inside the

host cell. According to the Nomenclature Committee on Cell Death

2018, as a formal definition of the CIC structure at this time, they

propose to define entotic cell death as a form of regulated cell death

that originates from actomyosin-dependent cell-in-cell

internalization and is executed by lysosomes (39).

Understanding the role of CIC in cancer cells is a major

challenge in oncological biology and physiology. Larger cancer

patient studies, a better understanding of the consequences of

chemotherapy on CIC, biomarkers for each CIC formation

process as well as the development of automated CIC detection in

histological sections of tumor samples are required to use CIC

presence as a clinical diagnostic tool in the future. In addition, in the

TME, the interaction between CIC and surrounding tissues (e.g.,

cancer-associated fibroblasts, matrix metalloproteinases, tumor-

infiltrating lymphocytes, etc.) has not been revealed so far, and

this clarification can contribute to understanding the real role and

function of CIC.

Again, Cano et al. indicated a protective role of homotypic CIC

structures in PDAC and identified Nupr1 as a molecular regulator

of this process (18). Interestingly, unlike cancers of other organs,

CIC frequency and prognosis are inversely correlated in PDAC. A

more detailed understanding of the biological mechanisms of

Nupr1 involvement in CIC formation will emphasize the role of
Frontiers in Oncology 05
CIC and greatly contribute to the development of CIC-

based therapies.

In addition, CIC-targeted cancer therapies using exosomes have

been proposed. Exosomes and other extracellular vehicles can

deliver agents with a defined anti-tumor activity (40, 41). At the

same time, the cell ingestion of exosomes and the vehicles may be

facilitated in cancers, representing one of the competent anti-tumor

therapeutic approaches.
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FIGURE 2

Molecular changes surrounding CIC in the TME.
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