論文

査読有り
2012年4月

A Curve Flow on an Almost Hermitian Manifold Evolved by a Third Order Dispersive Equation

FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA
  • Eiji Ondera

55
1
開始ページ
137
終了ページ
156
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1619/fesi.55.137
出版者・発行元
KOBE UNIV, DEPT MATHEMATICS

We consider a curve flow for maps from a real line into a compact almost Hermitian manifold, which is governed by a third order nonlinear dispersive equation. This article shows short-time existence of a solution to the initial value problem for the equation. The difficulty comes from the lack of the Kahler condition on the target manifold, since the covariant derivative of the almost complex structure causes a loss of one derivative in our equation and thus the classical energy method breaks down in general. In the present article, we can overcome the difficulty by constructing a gauge transformation on the pull-back bundle for the map to eliminate the derivative loss essentially, which is based on the local smoothing effect of third order dispersive equations on the real line.

Web of Science ® 被引用回数 : 4

リンク情報
DOI
https://doi.org/10.1619/fesi.55.137
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000302846200007&DestApp=WOS_CPL
URL
http://www.math.sci.kobe-u.ac.jp/~fe/xml/mr2976046.xml

エクスポート
BibTeX RIS