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Abstract

Background and objective: Idiopathic pulmonary fibrosis (IPF) has poor prognosis,
and the multidisciplinary diagnostic agreement is low. Moreover, surgical lung biop-
sies pose comorbidity risks. Therefore, using data from non-invasive tests usually
employed to assess interstitial lung diseases (ILDs), we aimed to develop an automated
algorithm combining deep learning and machine learning that would be capable of
detecting and differentiating IPF from other ILDs.

Methods: We retrospectively analysed consecutive patients presenting with ILD
between April 2007 and July 2017. Deep learning was used for semantic image seg-
mentation of HRCT based on the corresponding labelled images. A diagnostic algo-
rithm was then trained using the semantic results and non-invasive findings.
Diagnostic accuracy was assessed using five-fold cross-validation.

Results: In total, 646,800 HRCT images and the corresponding labelled images were
acquired from 1068 patients with ILD, of whom 42.7% had IPF. The average segmen-
tation accuracy was 96.1%. The machine learning algorithm had an average diagnostic
accuracy of 83.6%, with high sensitivity, specificity and kappa coefficient values
(80.7%, 85.8% and 0.665, respectively). Using Cox hazard analysis, IPF diagnosed
using this algorithm was a significant prognostic factor (hazard ratio, 2.593; 95% CI,
2.069-3.250; p <0.001). Diagnostic accuracy was good even in patients with usual
interstitial pneumonia patterns on HRCT and those with surgical lung biopsies.
Conclusion: Using data from non-invasive examinations, the combined deep learning
and machine learning algorithm accurately, easily and quickly diagnosed IPF in a pop-
ulation with various ILDs.

KEYWORDS
computed tomography, deep learning, diagnosis, idiopathic pulmonary fibrosis, interstitial lung disease,
machine learning

However, the diagnostic agreement on ILD is poor, even
among respiratory physicians.”® In a large international

Interstitial lung disease (ILD) is a heterogeneous and chal-
lenging group of pulmonary disorders with varied prognoses
and management options.' > Among ILDs, idiopathic pul-
monary fibrosis (IPF) is characterized as a chronic, progres-
sively worsening fibrotic lung disease of unknown aetiology
with limited prognosis.* With the recently proven efficacy of
antifibrotic therapies, IPF diagnostic accuracy has become
crucial.®

study, the interobserver agreement on IPF diagnosis as eval-
uated by Cohen’s kappa coefficient (k) was 0.53 among
experts and only 0.41 among respiratory physicians.” The
gold standard for diagnosing ILD is a dynamic integrated
approach using multidisciplinary discussion (MDD), with
close communication among clinicians, radiologists and
pathologists.” MDD improves interobserver agreement® and
diagnostic confidence.® The diagnostic agreement on IPF

Respirology. 2022;1-8.

wileyonlinelibrary.com/journal/resp

© 2022 Asian Pacific Society of Respirology. | 1


https://orcid.org/0000-0002-3522-1845
https://orcid.org/0000-0001-7456-5459
mailto:tfuru@med.nagoya-u.ac.jp
http://wileyonlinelibrary.com/journal/resp
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fresp.14310&domain=pdf&date_stamp=2022-06-13

2

FURUKAWA ET AL.

among international MDD teams is 0.60.° However, diag-
nosing all patients with ILD by MDD may be unfeasible due
to time-space limitations and a lack of ILD experts. More-
over, MDD participants should be experienced ILD experts.”
Surgical lung biopsy (SLB) also accurately diagnoses ILD;
however, it is not performed in cases of patient refusal, sig-
nificant medical history or comorbidity risks such as acute
exacerbation. Therefore, a screening tool to diagnose IPF
without MDD or SLB is needed.’

Because HRCT images provide clues for IPF diagnosis,10
several automated ILD recognition systems using HRCT
images have been developed.'' "> Machine learning and deep
learning have gradually been used in various fields. In ILD
imaging, a deep learning algorithm for categorizing HRCT
images according to the HRCT classification'® had 73% accu-
racy, equivalent to that of chest radiologists.'* However, this
algorithm had some problems, such as the comprehensibility
of the result, and the output was only a classification of the
HRCT patterns, not an ILD diagnosis.

Considering comprehensiveness, a deep learning
semantic segmentation method assigns disease-specific
labels, such as honeycombing, to every pixel of computed
tomography (CT) images and visually shows the disease
area on the images. Thus, we used semantic HRCT find-
ings and non-invasive clinical examination data to
improve the diagnostic accuracy of deep learning algo-
rithms because MDD teams achieve a diagnosis by inte-
grating these data.

Herein, we aimed to develop an algorithm for diag-
nosing IPF in a sample of various ILDs using non-
invasive examination data, clinical information and CT
imaging findings available in daily clinical practice. For
improved comprehensibility of the algorithm, lesion rec-
ognition on CT by a semantic segmentation method was
also performed.

METHODS
Data sets and data collection

For algorithm development, we retrospectively analysed med-
ical records of 1068 consecutive patients with chronic ILD
initially evaluated between April 2007 and March 2017 at an
ILD referral centre in Japan. ILD was diagnosed through
MDD according to the 2018 IPF guidelines, 2013 idiopathic
interstitial pneumonia statement and other corresponding
disease guidelines.**'” This MDD team included specialists
from other ILD centres. All patients’ diagnoses were con-
firmed in December 2018. The usual interstitial pneumonia
(UIP) categorization of the HRCT images was based on the
2018 HRCT criteria and was made by two clinicians with
33 and 21years’ experience, respectively, and/or a thoracic
radiologist with 30 years” experience, who were blinded to the
patients’ clinical course and examination data.”

The Institutional Review Board of Nagoya University
Graduate School of Medicine (IRB No. 2017-0263-2)

SUMMARY AT A GLANCE

Our comprehensible combined deep learning and
machine algorithm can be used to easily, rapidly
and non-invasively diagnose and differentiate idio-

pathic pulmonary fibrosis from various interstitial
lung diseases using non-invasive examinations and
HRCT, with high accuracy, sensitivity, specificity
and kappa coefficient values.

approved this study. The informed consent requirement was
waived.

Eligible patients were initially evaluated by non-invasive
examinations, such as patient characteristics, pulmonary
function tests, bronchoalveolar lavage and serologic tests, as
is usual for ILD assessments. Chest HRCT images with 0.5
0.625-mm slice thickness at end-inspiration in the supine
position were obtained at the initial evaluation. The dura-
tion from initial evaluation to last attendance or death was
recorded.

Development and validation data sets

We adopted a five-fold cross-validation scheme to ensure
the validity of the results. The data set was randomly split
into five non-overlapping sets and each time four fifths of
the data were used for training and the remainder was tested
for model performance; this process was repeated five times.
As a principal performance metric, we used the balanced
accuracy averaged over the five-fold for the test set. Missing
values in clinical examination data were appropriately
imputed (Appendix S1 in the Supporting Information). On
axial images, the lung HRCT data were divided into four
zones per patient (upper, middle, lower and basal;
Appendix S1 in the Supporting Information) based on a pre-
vious report.'® CT images were augmented with random fil-
ter and rotation effects. Subsequently, each augmented
image was divided into 25 images.

Data preprocessing

For input to the algorithm, we used only blood tests, pul-
monary function tests, patient characteristics and CT
images, which are routine non-invasive clinical tests and
evaluations. No histopathological images, histological find-
ings, CT reading results or CT pattern readings by radiolo-
gists were used.

In data preprocessing, HRCT images were labelled as
follows by a clinician with 10years’ experience, who was
independent of the MDD team: IPF, non-IPF, lung and
extrapulmonary area. Briefly, areas of honeycombing and/or
reticular pattern with peripheral traction bronchiectasis were
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FIGURE 1 Examples of semantic
segmentation results and elliptically distributed
labelled images. (A) A labelled image generated by
the trained algorithm. Red and blue areas are
suggestive of idiopathic pulmonary fibrosis (IPF)
and non-IPF, respectively. (B) A labelled image
generated from the semantic segmentation is
elliptically distributed and summarized based on
the disease-specific area.

classified as suggestive of IPF. Areas suggestive of non-IPF
were predominant consolidation, extensive pure ground-
glass opacity, extensive mosaic attenuation and/or diffuse
nodules or cysts.

Combination of machine learning algorithms

We built a comprehensible machine learning model for IPF
diagnosis in two steps. As information on both disease
lesion semantics and location on HRCT are important for
ILD diagnosis, we first used the deep fully convolutional
neural network FCN-Alexnet'” for semantic segmentation
of HRCT images, with labelled images as training data
(Appendix S1 in the Supporting Information).'” The net-
work parameters were trained by minimizing the categorical
cross-entropy using the Stochastic Gradient Descent opti-
mizer with back-propagation with a learning rate of 0.001
and batch size of 1024 (Appendix S1 in the Supporting
Information).

Second, the semantic image results (Figure 1A) were ellip-
tically divided into five inner to outer layers, and the respec-
tive IPF/non-IPF area ratios were calculated (Figure 1B).
Based on disease-specific ratios of distribution areas and other
clinical data (Appendix S1 in the Supporting Information),
support vector machines, a type of binary machine learning
classifiers, were trained to diagnose IPF using data standardi-
zation and a linear kernel (Appendix S1 in the Supporting
Information). Appendix S1 in the Supporting Information
shows the variables used to build machine learning models.
Even if SLBs were performed, the pathological findings were
not used to develop the model. Finally, the combination algo-
rithm was assessed for diagnostic accuracy using five-fold
cross-validation with each of the test sets.

Statistical analysis

Data preprocessing, machine learning algorithm develop-
ment and other statistical analyses were performed using

MATLAB 9.3 (MathWorks, Natick, MA) and R statistical
software (version 3.6.1, R Foundation Inc., Vienna, Austria).
The HRCT semantic segmentation model was implemented
using the open-source software Keras based on the machine
learning library TensorFlow, running on NVIDIA Tesla
V100 Volta graphics processor units, for the input image
cropped as 128 x 128 pixels.

Continuous data are presented as the mean + SD. Cate-
gorical variables are reported as frequency (%). Between-
group differences were assessed using the two-sided ¢-test or
chi-square test as appropriate. The Cox proportional hazard
analysis results are presented as estimated hazard ratios
(HRs) with 95% ClIs, with adjustment for baseline age, sex
and percent forced vital capacity. Harrell’s C-statistic was
used to evaluate the ability of each Cox proportional hazards
model to predict mortality. Cumulative survival probabilities
were plotted with the Kaplan-Meier method. Validity of the
algorithm diagnosis for mortality prediction was evaluated
by the Cox hazards and Kaplan-Meier methods in all
patients, patients with UIP patterns on CT and patients
without SLB. p values of less than 0.05 were considered sta-
tistically significant.

RESULTS

Of the 1068 eligible patients with ILD, 456 (42.7%) were
diagnosed with IPF by MDD. Overall, 238 (22.3%),
234 (21.9%) and 28 (2.6%) patients had unclassifiable idio-
pathic interstitial pneumonia, connective tissue disease-
related ILD and hypersensitivity pneumonia, respectively
(Table S1 in the Supporting Information). Table 1 shows the
patients’ demographic and clinical data. The median sur-
vival time was 86.5 months (95% CI, 77.8-102.2 months).
The final HRCT data set comprised 646,800 unique
images for algorithm training. Using these and the
corresponding labelled images, semantic segmentation train-
ing was conducted. Averaging over all folds, the patient
numbers were 854 for training and 213 for testing. After
semantic segmentation, the semantic results were obtained
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TABLE 1 Baseline characteristics of the data sets
Diagnosis by MDD
IPF Non-IPF p value

Participants, N 456 612
Age, years 67.9+82 64.3 +£10.6 <0.001
Male sex, N (%) 363 (80%) 310 (51%) <0.001
BMI, kg/m* 232435 224439 <0.001
Pack-years® 33.2+£50.3 20.14+29.0 <0.001
Surgical lung biopsy 138 (30%) 263 (43%) <0.001
FVC, % pred 78.0 £20.5 83.8£224 <0.001
FEV,/FVC 85.6+£7.9 827492 <0.001
DLco, % pred” 58.8 +21.3 67.4+228 <0.001
KL-6, U/ml 1394 £ 991 1386 + 1457 091
BALF findings*®

Total cell count, 10°/ml 1.68 £ 1.16 1.79 £ 1.69 0.23

Macrophages, % 86.3+15.7 75.5+25.1 <0.001

Lymphocytes, % 63179 147 £19.1 <0.001

Neutrophils, % 45+119 6.3+ 14.5 0.04

Eosinophils, % l.6+4.1 24+59 0.01

CD4/CD8 2.57 £2.33 223 £3.28 0.06

Note: Data are presented as mean & SD or number (%). Autoantibody data are not
shown.

Abbreviations: % pred, percent predicted; BALF, bronchoalveolar lavage fluid; DLco,
diffusion capacity for carbon monoxide; FEV, forced expiratory volume in the first
second; FVC, forced vital capacity; IPF, idiopathic pulmonary fibrosis; KL-6, serum
Krebs von den Lungen-6; MDD, multidisciplinary discussion; pack-year, a measure of
the amount a person has smoked.

*Nine hundred and twenty-six patients.

°One thousand and thirty-four patients.

“Nine hundred and thirty patients.

as labelled slice images (Figure 1A). The average test accu-
racy for semantic segmentation was 96.1% (Table 2). The
average accuracy of IPF diagnosis increased from 65.3%
without distribution to 79.7%, with the elliptically

distributed IPF/non-IPF ratio calculated from the semantic
results (Figure 1B and Table 2). Moreover, using these
results and the clinical data (Appendix S1 in the Supporting
Information), the algorithm exhibited high accuracy, sensi-
tivity, specificity, positive predictive value, negative predic-
tive value and kappa coefficient (83.6%, 80.7%, 85.8%,
80.9%, 85.6% and 0.665, respectively). Table S1 in the
Supporting Information shows the algorithmic prediction
frequency agreement with MDD diagnosis.

Cox hazard analysis showed that IPF diagnosed by the
machine learning algorithm (AI-IPF) was a significant prog-
nostic factor (HR, 2.634; 95% CI, 2.104-3.298; p < 0.001; C-
statistic, 0.765), as was IPF diagnosed by MDD (MDD-IPF;
Table 3). Moreover, AI-IPF had a prognostic discriminatory
ability equivalent to that of MDD-IPF (Figure 2). Patients
with mismatched MDD and AI diagnoses showed similar
prognosis (Figure S1 in the Supporting Information).

Among patients with MDD-IPF, 88 (19.3%) were cate-
gorized as Al-non-IPF by the algorithm (Table S2 in the
Supporting Information), and the AI-IPF group had a sig-
nificantly worse survival probability compared to the Al-
non-IPF group (HR, 2.213; 95% CI, 1.536-3.189; p < 0.001;
Figure 3). AI-IPF had a higher ratio of the presence of
honeycombing than Al-non-IPF (69.0% vs. 35.2%, p<
0.001); however, the presence of honeycombing was not sig-
nificantly associated with a poor prognosis (HR, 1.210; 95%
CI, 0.930-1.574; p = 0.155) (Appendix S2 in the Supporting
Information).

Even in cases with SLB that were difficult to diagnose
without SLB, the algorithm accuracy was 81.0%. Moreover,
in patients with UIP patterns or UIP 4 probable UIP pat-
terns on HRCT, our algorithm showed a high diagnostic
accuracy (83.6% and 80.2%, respectively) and prognostic
discrimination ability (C-index, 0.725 and 0.720, respec-
tively; Table S3 in the Supporting Information). Moreover,
in patients with UIP pattern on HRCT or histopathology,
our algorithm labelled 87.5% of MDD-IPF as AI-IPF.

TABLE 2 Accuracy of test data for semantic segmentation and diagnostic results using SVMs based on HRCT and other clinical data

Semantic segmentation accuracy for ILD

findings® Diagnostic accuracyh

Cross- Using semantic With elliptical Addition of clinical
validation Using HRCT (%) result (%) distribution (%) data (%)

Set 1 96.122 66.512 81.860 83.721

Set 2 95.993 64.455 81.517 84.834

Set 3 96.095 62.500 77.315 79.167

Set 4 95.956 67.606 78.404 84.507

Set 5 96.329 65.566 79.717 85.849

Mean 96.099 65.328 79.763 83.616

Note: The accuracy of semantic segmentation is the pixel-based accuracy following ILD labelling of images. ‘Using semantic result’ indicates diagnostic accuracy across SVM
results using semantic results from HRCT and MDD diagnosis of IPF. “With elliptical distribution’ indicates diagnostic accuracy across SVM results using semantic results from
HRCT and MDD diagnosis of IPF, with the addition of elliptical distribution. ‘Addition of clinical data’ indicates diagnostic accuracy across SVM results using semantic results
from HRCT and MDD diagnosis of IPF, with the addition of clinical data as well as elliptical distribution.

Abbreviations: ILD, interstitial lung disease; IPF, idiopathic pulmonary fibrosis; MDD, multidisciplinary discussion; SVM, support vector machine.

“The accuracy of every pixel of the semantic results for HRCT images against the corresponding disease-specific labelled images.

"The accuracy of the algorithmic diagnosis of IPF against the MDD diagnosis.
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TABLE 3 Cox hazard analysis for mortality from IPF versus non-IPF:
IPF diagnosis by humans versus that by machine

HR (95% CI)* p value C-statistic
MDD-IPF 2.711 (2.162-3.400) <0.001 0.762
AI-IPF 2.593 (2.069-3.250) <0.001 0.765

Abbreviations: AI-IPF, IPF diagnosed by the machine learning algorithm; HR, hazard
ratio; IPF, idiopathic pulmonary fibrosis; MDD-IPF, IPF diagnosed by
multidisciplinary discussion.

*Adjusted for age, sex and percent forced vital capacity at baseline.

DISCUSSION

Using non-invasive examination data and CT images avail-
able in clinical practice, we developed a comprehensive
machine learning algorithm that can diagnose and differen-
tiate IPF from all ILDs with an accuracy equivalent to that
of MDD diagnosis. Currently, there are several machine
learning models using CT images or molecules as input,'®
which outputs CT patterns mentioned in the IPF
guidelines,'® indicates pathological UIP' or shows CT
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findings such as ground-glass opacities,''***"** based on
each image'>'**° or each pixel of an image*"**; however,
there is no model to diagnose IPF and integrate CT images
and clinical information. We are the first to develop a multi-
modal Al to diagnose IPF and generate labelled images as a
diagnostic basis by integrating analysis of clinical informa-
tion, examination and CT images similar to clinicians, with-
out input from ILD experts, MDD or SLB. The prognostic
discrimination ability of the algorithm was equivalent to that
of MDD (Table 3). Moreover, the diagnostic accuracy was
good even in patients with UIP patterns on HRCT and in
patients with SLB, even though the input was limited to data
derived from non-invasive methods. Even among patients
with MDD-IPF, those with AI-IPF had a worse mortality
rate. Therefore, by combining our algorithm with MDD, IPF
and/or groups with poor prognosis may be identified
quickly and easily.

As HRCT pattern is important in diagnosing IPF,* and
an early IPF diagnosis is crucial for early treatment to pre-
serve lung function,”* researchers have tested automated
HRCT-based systems that can identify ILD findings
(e.g., ground-glass opacity).'* Recently, machine recogni-
tion of ILD findings using deep learning exhibited 82%
accuracy”'; our algorithm has a higher accuracy of 96%,
attributable to the larger training data used, with more than
six times the number of patients enrolled in previous stud-
ies. This is consistent with the fact that deep learning gen-
erally requires voluminous training data of good quality.
Another reason might be the choice of segmentation labels
used with our algorithm, which aimed to indicate whether
an HRCT finding was suggestive of IPF, thereby facilitating
diagnosis.

Deep learning can be limited by the incomprehensibility
of its judgement process. However, our algorithm yielded
high-accuracy labelled images, providing a comprehensible
model with which to diagnose IPF that identifies the pat-
terns used to make the diagnosis, where the algorithm rec-
ognized these patterns on the HRCT images. Thus, the
algorithm can both generate semantically labelled images
and diagnose IPF, potentially enabling it to play an impor-
tant role in clinical settings. The diagnostic accuracy was
good even in cases with UIP patterns on HRCT, suggesting
that our algorithm not only recognized CT patterns but also
the integrated clinical information. Because perfect ILD
lesions segmentation on HRCT is difficult, good segmental
deep learning results using manually labelled images may
have limited impact; however, this study’s most important
finding was the high accuracy of IPF diagnosis using HRCT
segmental results. Our algorithm showed a higher diagnostic
agreement in IPF diagnosis (x = 0.67) than the international
MDD teams (k = 0.53)° and respiratory physicians
(k = 0.41).7 This may be due to the segmentation and ellip-
tical division of the segmented images into outer and inner
layers, which mimic the diagnostic process used by physi-
cians. This is wuseful for particularly evaluating
honeycombing, the key observation for IPF diagnosis,
because this feature appears in the subpleural area.'”

To date, using MDD to diagnose all patients with ILD is
challenging because of the above-mentioned MDD-
associated problems. However, our algorithm can be used as
a screening tool by general physicians and non-expert respi-
ratory physicians. On combining this algorithm with MDD,
ILD diagnosis could be improved so that opportunities for
suitable treatment (e.g., with antifibrotic drugs) would not
be missed. Moreover, our algorithm showed good diagnostic
accuracy even in patients with SLB; thus, a potential benefit
of our algorithm is that its use may allow some patients to
avoid SLB, thereby reducing the risk of acute exacerbation
and death.

Interestingly, even in the MDD-IPF group, patients clas-
sified as AI-IPF had a worse mortality rate. Our algorithm
may thus contribute new information for ILD diagnosis and
treatment. However, current technology cannot create a
tully explainable Al as not all the calculations and processes
of this Al system can be completely understood; therefore,
further study and innovation are needed.

As our study was based on a learning algorithm from a
single MDD team’s diagnoses and the labelled images seg-
mented by a single clinician, our findings require cautious
interpretation. Another generalizability issue is the disease
proportion bias. Particularly, the proportion of hypersensi-
tivity pneumonitis was less than that in other published
cohorts (2.6% vs. 2%-47%).>> While our algorithm accu-
rately classified 82% of patients with hypersensitivity pneu-
monitis, it may not work well in cohorts with higher
frequencies of hypersensitivity pneumonitis. Moreover,
while the algorithm was trained and tested using five-fold
cross-validation, validation was with a single-centre data set
of patients from a single race. Thus, the results may not be
generalizable to other populations. Moreover, as our study
collected HRCT images with 0.5-0.625-mm slice thickness,
our algorithm may not work well with images of other slice
thicknesses. However, in a feasibility study (Figure S2 in the
Supporting Information), our system had almost the same
semantic segmentation accuracy with images of 2-mm slice
thickness. Other slice thicknesses are needed for validation.

This easy-to-use and rapid machine learning algorithm
based on data from non-invasive techniques can diagnose
IPF with high accuracy, sensitivity, specificity, positive pre-
dictive value, negative predictive value and kappa coefficient.
However, a more robust algorithm is clinically needed, fur-
ther warranting multicentre studies.
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