Papers

Last author
Mar, 2021

Differences between the root and horn cells of the human medial meniscus from the osteoarthritic knee in cellular characteristics and responses to mechanical stress.

Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association
  • Yuki Okazaki
  • ,
  • Takayuki Furumatsu
  • ,
  • Yusuke Kamatsuki
  • ,
  • Keiichiro Nishida
  • ,
  • Yoshihisa Nasu
  • ,
  • Ryuichi Nakahara
  • ,
  • Taichi Saito
  • ,
  • Toshifumi Ozaki

Volume
26
Number
2
First page
230
Last page
236
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1016/j.jos.2020.02.015

BACKGROUND: Many histological, mechanical, and clinical studies have been performed on the medial meniscus posterior root attachment, as it often tears in patients with osteoarthritic knee. Medial meniscal root repair is recommended in clinical situations; however, to date, no studies have examined the differences between meniscal root and horn cells. The aim of this study was, therefore, to investigate the morphology, reaction to cyclic tensile strain, and gene expression levels of medial meniscal root and horn cells. METHODS: Meniscal samples were obtained from the medial knee compartments of 10 patients with osteoarthritis who underwent total knee arthroplasty. Root and horn cells were cultured in Dulbecco's modified Eagle's medium without enzymes. The morphology, distribution, and proliferation of medial meniscal root and horn cells, as well as the gene and protein expression levels of Sry-type HMG box 9 and type II collagen, were determined after cyclic tensile strain treatment. RESULTS: Horn cells had a triangular morphology, whereas root cells were fibroblast-like. The number of horn cells positive for Sry-type HMG box 9 and type II collagen was considerably higher than that of root cells. Although root and horn cells showed similar levels of proliferation after 48, 72, or 96 h of culture, more horn cells than root cells were lost following a 2-h treatment with 5% and 10% cyclic tensile. Sry-type HMG box 9 and α1(II) collagen mRNA expression levels were significantly enhanced in both cells after 2- and 4-h cyclic tensile strain (5%) treatment. CONCLUSIONS: Medial meniscal root and horn cells have distinct morphologies, reactions to mechanical stress, and cellular phenotypes. Our results suggest that physiological tensile strain is important to activate extracellular matrix production in horn cells.

Link information
DOI
https://doi.org/10.1016/j.jos.2020.02.015
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/32223991
ID information
  • DOI : 10.1016/j.jos.2020.02.015
  • Pubmed ID : 32223991

Export
BibTeX RIS