
Fully Dynamic Group Signature Scheme with
Member Registration and Verifier-local

Revocation

M. Nisansala Sevwandi Perera and Takeshi Koshiba

1 Graduate School of Science and Engineering
Saitama University, Japan

perera.m.n.s.119@ms.saitama-u.ac.jp,
2 Faculty of Education and Integrated Arts and Sciences

Waseda University, Japan
tkoshiba@waseda.jp

Abstract. Since Bellare et al. (EUROCRYPT 2003) proposed a security
model for group signature schemes, almost all the security of group sig-
nature schemes have been discussed in their model (the BMW03 model).
While the BMW03 model is for static groups, Bellare et al. in 2005 con-
sidered the case of dynamic group signature schemes and provided a
solution to cope with dynamic groups. However, their scheme does not
serve member revocation, serves only member registration. In this paper,
we incorporate a member revocation mechanism into a group signature
scheme with member registration and construct a fully dynamic group
signature, which supports Verifier-Local Revocation (VLR) to manipu-
late member revocation. Moreover, we achieve the security of the pro-
posed scheme with a restricted version of full-anonymity to overcome the
security complications that may arise due to member revocation.

Keywords: dynamic group signature, verifier-local revocation, almost-
full anonymity

1 Introduction

The notion of group signature was first introduced by Chaum and van Heyst [12]
in 1991. Each member has a private signing key and a corresponding public
key. The private signing key is used to generate signatures on messages while
the public key is used as a public verification key by verifiers to authenticate
the signatures. Group signatures allow group members to sign anonymously on
behalf of the group (anonymity). Only the authorized person can reveal the
identity of the member who signs (traceability).

Besides the naive security notions (anonymity and traceability) for group
signatures, more security requirements like un-frameability, collusion resistance,
and unforgeability are proposed. In 2003, Bellare et al. [2] suggested a formal
security notion with full-anonymity and full-traceability to provide a stronger
security for group signature schemes. This BMW03 model supports only for

2 M. Nisansala Sevwandi Perera and Takeshi Koshiba

static groups, not for dynamic groups. Hence, it does not guarantee the security
when group members can be flexibly reorganized.

In the setting of dynamic group signatures, neither the number of group
members nor their keys should be fixed in the setup phase. Thus, a scheme
should be able to register or revoke members anytime. In 2005, Bellare et al. [3]
suggested a scheme by providing foundations for dynamic group signatures. The
scheme in [3] helps to bridge the gap between the results in [2] and the previ-
ous works are done to deliver a dynamic group signature scheme. The dynamic
groups are more complex than the static groups since they require many se-
curity concerns and deliver more issues to be focused. Schemes in [3] and [14]
provide formal security definitions for dynamic group signatures to overcome
those issues. Another scheme was suggested by Libert et. al. [15]. However, none
of them are fully dynamic group signature schemes since they do not support
member revocation. Recently, Bootle et. al. [7] suggested a security definition for
fully dynamic group signature schemes and they have also provided some fixes
for existing schemes. Hereafter, if a scheme supports both member registration
and member revocation we refer to it as fully dynamic and if a scheme supports
either member registration or revocation, we refer to it as dynamic.

The member revocation is an essential requirement in practice and many re-
searchers presented various approaches to manage member revocation in groups.
One approach is replacing the group public key and the private signing keys with
new keys for all existing members when a member is revoked. Since this requires
to update all the existing members and the verifiers, it is not the best solution,
especially not suitable for large groups. In 2001, Bresson et al. [8] provided a
solution that requires signers to prove, at the time of signing, that their member-
certificates are not in the public revocation list. In 2002 Camenisch et al. [11]
proposed a different approach, which is based on dynamic accumulators. It maps
a set of values into a fixed-length string and permits efficient proofs of member-
ships. However, this approach requires existing members to keep track of the
revoked users. Thus, it increases the workload of existing members. Moreover,
schemes in [5], [10], and [18] have taken some other revocation approaches.

A different and simple revocation mechanism was suggested by Brickell [9],
which was subsequently formalized by Boneh et al. [6]. This revocation mecha-
nism is known as Verifier-Local Revocation (VLR). VLR allows the members to
convince the verifiers that they are valid members, who are not revoked and eli-
gible to sign on behalf of the group. Every member has a unique token, and when
he is revoked, this token is added to a list called Revocation List (RL). Then
the group manager passes the latest RL to the verifiers. When a verifier needs
to authenticate a signature, he checks the validity of the signer with the help of
RL. Since the verifiers are smaller in number than the members, this mechanism
is more convenient than any others, especially for large groups. Moreover, this
is advantageous to the previous approaches since it does not affect on existing
members.

FDGS Scheme with Member registration and Verifier-local Revocation 3

Our Contribution

This paper presents a fully dynamic group signature scheme that allows to both
add and revoke members and a new security notion to overcome some security
barriers.

First we take the scheme in [3], which includes an interactive protocol, that
allows new users to join the group at anytime, and we incorporate with mem-
ber revocation mechanism by adapting the methods in the scheme in [3] and
suggesting new methods to manage member revocation with VLR.

Then we suggest a method to generate member revocation tokens in our
scheme. In general, any VLR scheme consists with a token system and those
tokens are generated as a part of the secret signing key. Since, our intention is to
apply full anonymity which requires to provide all the secret signing keys to an
adversary at the anonymity game, that method is not suitable for our scheme.
If we generate revocation tokens using the signing keys of the members, the
adversary can obtain the tokens of the challenged indices and win the anonymity
game. Thus, to present a member’s token we use his personal secret key (usk [i])
and his verification key (pki). Nevertheless, pki is a public attribute, revealing
pki does not show any other information about the member. Even though usk [i]
is a secret key, no one can generate any secret signing key by usk [i]. Besides,
no one can create a group member token using the secret signing key, since the
token is not a part of the secret signing key. Thus, it ensures the security of the
scheme.

Moreover, we present a new security notion that is somewhat weaker than the
full-anonymity. VLR relies on a weaker security notion called selfless-anonymity.
Even our intention is to apply full anonymity for our scheme, achieving full-
anonymity suggested in the BMW03 model for VLR is quite difficult. In case of
the anonymity game (for the definition) between a challenger and a adversary, the
BMW03 model passes all the secret keys to the adversary. But, we cannot allow
the adversary to reveal all the secret keys since he can corrupt the anonymity of
the scheme. If we allow the adversary to reveal all the users’ personal private keys,
which we use to create tokens he can create any token, including the challenged
users’ tokens. Then, he can verify the challenging signature and return the correct
user index of the challenged signature. Thus, we suggest a new restricted version
of full anonymity (almost full-anonymity), which will not provide all the secret
keys to the adversary to ensure the security of our scheme. It will allow the
adversary to reveal any member’s secret signing keys not the member’s personal
private keys.

2 Preliminaries

In this section, we describe notations used in the paper and the primitives with
which we use to construct our scheme. Construction of dynamic group signa-
ture schemes use three building blocks: public-key encryption schemes secure
against chosen-ciphertext attack [13], digital signature schemes secure against

4 M. Nisansala Sevwandi Perera and Takeshi Koshiba

chosen-message attack [1], and simulation-sound adaptive non-interactive zero-
knowledge (NIZK) proofs for NP [17]. All the three primitives are based on
trapdoor permutation.

2.1 Notation

We denote by λ the security parameter of the scheme and let N = {1, 2, 3, ...}
be the set of positive integers. For any k ≥ 1 ∈ N, we denote by [k] the set of
integers {1, ..., k}. An empty string is denoted by ε. If s is a string, then |s|
denotes the length of the string and if S is a set then |S| denotes the size of the

set. If S is a finite set, b
$← S denotes that b is chosen uniformly at random from

S. We denote experiments by Exp.

2.2 Digital Signature Schemes

A digital signature scheme DS=(Ks,Sig,Vf) consists of three algorithms: key
generation Ks, signing Sig, and verification Vf. The scheme DS should satisfy
the standard notion of unforgeability under chosen message attack.

For an adversary A, consider an experiment Expunforg-cma
DS,A (λ). First a pair

of a public key and the corresponding secret key for the scheme DS is obtained

by executing Ks with the security parameter λ as (pk, sk)
$← Ks(1

λ). Then the
public key pk is given to the adversary, and the adversary can access the signing
oracle Sig(sk, ·) for any number of messages. Finally, the forging adversary A
outputs (m, σ). He wins if σ is a valid signature on the message m and m is not

queried so far. We let Advunforg-cma
DS,A (λ) = Pr[Expunforg-cma

DS,A (λ) = 1].
A digital signature scheme DS is secure against forgeries under chose message

attack if Advunforg-cma
DS,A (λ) is negligible in λ for any polynomial-time adversary

A.

2.3 Encryption Scheme

An encryption scheme E=(Ke,Enc,Dec) consists of three algorithms: key gener-
ation Ke, encryption Enc, and decryption Dec. The scheme E should satisfy the
standard notion of indistinguishability under adaptive chosen-ciphertext attack.

For an adversary A, consider an experiment Expind-cca-b
E,A (λ). First a pair

of a public key and the corresponding secret key for the encryption scheme E
is obtained by executing Ke with the security parameter λ and a randomness
string re (where the length of re is bounded by some fixed polynomial r(λ)) as

(pk, sk)
$← Ke(1

λ, re). Let LR(m0,m1, b) a function which returns mb for a bit
b and messages m0,m1. We assume the adversary A never queries Dec(sk, ·) on
a ciphertext previously returned by Enc(pk, LR(·, ·, b)). We let Advind-cca

E,A (λ) =

|Pr[Expind-cca-1
E,A (λ) = 1]− Pr[Expind-cca-0

E,A (λ) = 1]|.
An encryption scheme E is IND-CCA secure if Advind-cca

E,A (λ) is negligible in
λ for any polynomial-time adversary A.

FDGS Scheme with Member registration and Verifier-local Revocation 5

2.4 Simulation-sound Non-interactive zero knowledge proof system

A two-party game between a prover and a verifier which needs to determine
whether a given string is belong to a language or not, is called an interactive
system. The interactive system allows to exchange messages between the prover
and the verifier. Besides, argument systems are like interactive proof systems,
except they are required to be computationally infeasible for a prover to convince
the verifier to accept inputs not in the language. Non-interactive proof systems
are mono-directional [4]. The non-interactive proof systems allow a prover to
convince a verifier about a truth statement while zero-knowledge ensures that the
verifier learns nothing from the proof other than the truth of the statement. The
non-interactive zero knowledge proof system shows that without any interaction
but using a common string computational zero-knowledge can be achieved. In
a simulation-sound NIZK proof system, an adversary cannot prove any false
statements even after seeing simulated proofs of arbitrary statements.

An NP-relation over domain Dom ⊆ {0, 1}∗ is a subset ρ of {0, 1}∗×{0, 1}∗.
We say that x is a theorem and w is a proof of x if (x,w) ∈ ρ. The membership
of (x,w) ∈ ρ is decidable in time polynomial in the length of the first argument
for all x in Dom.

We fix an NP relation ρ over Dom and take a pair of polynomial time al-
gorithms (P, V), where P is randomized, and V is deterministic. Both P and
V have access to a common reference string R. The (P, V) is a non-interactive
proof system for ρ over Dom if the following two conditions are satisfied for
polynomials p and l.

– Completeness: ∀λ ∈ N,∀(x,w) ∈ ρ with |x| ≤ l(λ) and x ∈ Dom :

Pr [R
$← {0, 1}p(λ); π

$← P (1λ, x, w,R) : V (1λ, x, π,R) = 1] = 1.
– Soundness: ∀λ ∈ N,∀P̂ and x ∈ Dom such that x /∈ Lρ:

Pr[R
$← {0, 1}p(λ); π

$← P̂ (1λ, x, R) : V (1λ, x, π,R) = 1] ≤ 2−λ.

3 Our Scheme

We construct our scheme based on the scheme in [3]. In the scheme in [3], they
have taken a digital signature scheme DS=(Ks,Sig,Vf) and a public key en-
cryption scheme E=(Ke,Enc,Dec) as the building blocks to construct a group
signature scheme GS. Moreover, they have used NIZK proof system to convince
the verifier the validity of the signature. We also use above mentioned primitives;
DS, E, and NIZK to present a new scheme FDGS = (GKg, UKg, Join, Issue, Re-
voke, Sign, Verify, Open, Judge). GKg, UKg, and Judge are same as the scheme
in [3]. We provide a new algorithm Revoke to revoke members and we modify
Join, Issue, Sign, Verify, and Open to be compatible with the revocation mecha-
nism. We use DS for generating the group manager’s keys and E for generating
the opener’s keys. Thus, our group public key gpk consists of the security pa-
rameter λ, public keys of group manager and opener, and two reference strings
R1, R2 obtained for NIZK proof.

6 M. Nisansala Sevwandi Perera and Takeshi Koshiba

We describe our group joining protocol which executes Join and Issue in Figure
1 and we describe other algorithms of our scheme in Figure 2.

Fig. 1: Group joining protocol

3.1 Coping with VLR and making the scheme secure

In general,VLR schemes satisfy a weaker security notion called selfless-anonymity,
which does not provide any secret keys to the adversary. Even though our scheme
supports VLR mechanism, we make our scheme more secure by using the tech-
niques in [3] scheme and suggesting a new security notion called almost-full
anonymity. Making VLR scheme fully anonymous is quite difficult since the full
anonymity requires to provide all the secret keys to the adversary and providing
tokens to the adversary makes the scheme insecure. The adversary can execute
Verify with the tokens of the challenged indices and win the game easily. Thus, we
consider a new security notion called almost-full anonymity which will not pro-
vide tokens to the adversary, which is a restricted version of the full anonymity.

Moreover, any VLR scheme has an associated tracing mechanism called im-
plicit tracing algorithm to trace signers. The implicit tracing algorithm requires
to run Verify linear times in the number of group members. Compare to the
explicit tracing algorithm, which is used in schemes like [16], use of the implicit
tracing algorithm increases the time consumption. Hence, instead of using the
implicit tracing algorithm given in VLR we use algorithms provided in [3] for
our scheme’s tracing mechanism.

As well, VLR manages a token system. Thus, our scheme should consists
user tokens and those tokens should be unique to the users. Furthermore, to-
kens should not reveal user’s identity in case of disclosing to the outsiders. We
generate tokens for members, which will not expose identity of the members
even though tokens are opened to the outsiders. We use the combination of each
group member’s personal secret key and his verification key as his token, and we

FDGS Scheme with Member registration and Verifier-local Revocation 7

maintain the list RL with revoked members’ tokens.

3.2 Description of our scheme

There are two authorities, group manager and opener. The trusted setup is
responsible for generating the group public key and keys for the authorities. The
group manager manages member registration and member revocation while the
opener traces signers.

When a new user wants to join the group, he interacts with the group man-
ager via group-joining protocol (Figure 1), which allows new users to generate
their public key and secret keys. We assume this interaction between the new
user and the group manager is done through a secure channel. The new user pro-
duces a signature on his verification key and sends both the signature and the
key to the group manager. If the signature is acceptable, then the group manager
accepts him as a new member. In the registration table reg, we maintain a field
called Status for each member to identify the active status of them. Thus, the
group manager stores the index i, verification key pki, and the signature sigi of
the new member in reg and makes the status of the new member as active. After
that, the group manager issues member certification to the new member. Now
the new member can generate signatures on messages using his secret key.

Each member has a unique token, which is the tracing key to identify the
validity of signers, whether they are revoked or not. Here we use the member’s
personal secret key usk[i] and his verification key pki as the token since usk[i]
or pki does not help to reveal any other information. We check the existence of
the new user keys against reg at the joining protocol. Thus, in a situation that
a revoked member wants to join again, he cannot use his previous keys, and he
has to follow the process as a new user. That is to secure the scheme against
adversaries who steal tokens and trying to join the group. During the member
revocation, the group manager adds the revoking member’s token to RL and
updates reg to inactive. When a member needs to sign a message, he generates
the signature on a message with his secret key and passes to the verifier with
his token for verification. The verifier authenticates the signature on the given
message and checks the validity of the signer with the provided token against
the latest RL. In the case of necessity to trace the signer, the opener can trace
the signer using opener’s key, and he can check the status of the signer in reg.

Our scheme is a tuple FDGS=(GKg, UKg, Join, Issue, Revoke, Sign, Verify,
Open, Judge), which consists of polynomial time algorithms. Each algorithm is
described in below. GKg, UKg, and Judge are same as in [3] and Join, Issue, Sign,
Verify, and Open are different from the algorithms given in [3] since we have to
generate and pass the member’s token as an additional attribute in our scheme.
Revoke helps to revoke the misbehaved users.

– GKg(1λ): On input 1λ the trusted party obtains a group public key gpk and
authority keys, ik and ok. Then gives secret keys, ik to the group manager
and ok to the opener.

8 M. Nisansala Sevwandi Perera and Takeshi Koshiba

– UKg(1λ): Every user who wants to be a member, should run this algorithm
before the group-joining protocol to obtain their personal public key and
personal private key (upk[i], usk[i]). UKg takes as input 1λ. We assume
upk is publicly available.

– Join, Issue: The group-joining protocol is an interactive protocol between the
group manager and the user who wants to be a member. Join is implemented
by the user while Issue is implemented by the group manager. Join allows
new users to generate keys and a signature on the keys which are needed to
join the group. Issue allows the group manager to validate the keys and the
signatures sent by users and generate member-certifications. Each algorithm
takes an incoming message as input and returns an outgoing message. Join
and Issue maintain their current status for both parties. The user i generates
a public / secret key pair pki and ski. Then he produces a signature sigi on
pki using usk[i], which was obtained in UKg. Then, user sends sigi and pki
to the group manager to authenticate. The group manager authenticates
the signature sigi on pki and generates member-certification by signing pki
with his private key ik (gmsk). The group manager stores new member’s
informations, i, pki and sigi with the status as 1 (active) in reg. Then he
sends member-certification certi to the user who is the new member of the
group. After that new user can makes his secret key gsk[i]=(i, pki, ski, certi)
and his token grt[i]=(usk[i], pki).

– Revoke(i, grt[i], ik, RL, reg): This algorithm takes, index i of the member,
who wants to be revoked and the group manager’s secret key ik as inputs.
First, the group manager queries reg using the index i to obtain the infor-
mation of the member stored. Then he checks whether the queries are equal
to the data obtained by parsing the grt[i]. If the data are equal and if the
user is active, insert (usk [i], pki) to RL and updates reg to 0 (inactive).

– Sign(gpk, gsk[i], grt[i], m): This randomized algorithm generates a signa-
ture σ on a given message m. It takes the group public key gpk, the group
member’s secret key gsk and the message m as inputs. In addition, we pass
the group member’s token as an input to prove that the member is an active
person at the time of signing.

– Verify(gpk, m, σ, RL): This deterministic algorithm allows anyone in posses-
sion of group public key gpk to verify the given signature σ on the message
m and checks the validity of the signer against RL. This algorithm outputs
1 if both conditions are valid. Otherwise it returns 0.

– Open(gpk, ok, reg, m, σ): This deterministic algorithm traces the signer by
taking gpk, the opener’s secret key ok, reg, the message m and the signature
σ as inputs. It returns the index of the signer, the proof of the claim τ and
the status of the signer st at reg. If the algorithm failed to trace the signature
to a particular group member, it returns (0, ε, 0).

– Judge(gpk, i, upk[i], m, σ, τ): This deterministic algorithm outputs either
1 or 0 depending on the validity of the proof τ on σ. This takes, the group
public key gpk, the member index i, the tracing proof τ , the member verifica-
tion key upk[i], the message m and the signature σ as inputs. The algorithm
outputs 1 if τ can proof that i produced σ. Otherwise it returns 0.

FDGS Scheme with Member registration and Verifier-local Revocation 9

. In addition, we use the following simple polynomial-time algorithm.

– IsActive(i,reg): This algorithm determines whether the member i is active by
querying the registration table and outputs either 0 or 1.

4 Security Notions of the Scheme

Even though the BMW03 model has two key requirements; full-anonymity and
full-traceability, the scheme in [3] has three key requirements; anonymity, trace-
ability and non-frameability. Since full-traceability discussed in the BMW03
model covers both traceability and non-frameability, the BMW03 model has
only two requirements. In the setting of [3], traceability and non-frameability
are separated since non-frameability can be achieved with lower levels of trust
in the authorities than traceability as discussed below. According to the scheme
in [3], the opener’s secret key is provided to an adversary in traceability game
but, the issuer’s secret key is not provided. The scheme in [3], they assume that
the opener is partially corrupted in traceability. But in non-frameability both the
opener’s and the tracer’s secret keys are given to the adversary. Thus, the adver-
sary is stronger in non-frameability than in traceability. Thus, non-frameability
is separated from the traceability in [3]. Moreover, anonymity allows the adver-
sary to corrupt the issuer in [3]. Thus, we provide the issuer’s secret key to the
adversary but not the opener’s secret key.

However, the scheme in [3] does not support member revocation but our
scheme supports. Thus, we adapt the security experiments and the oracles to be
compatible with VLR. Before we discuss the security notions, we define the set
of oracles that we use. We suggest a new oracle, revoke to maintain the member
revocation queried by any adversary.

For the requirement of anonymity, we suggest a restricted version of full
anonymity. In the full anonymity game, we provide all the members’ secret keys
to the adversary including challenged indexes’ keys to the adversary. In our
scheme, this may help the adversary to create the challenged indexes’ tokens
since he knows all the members’ personal secret keys (usk) and he can execute
Verify to check which index is used to generate the challenged signature. Thus,
we will not provide users’ personal secret keys to the adversary when he request
for user’s secret keys. However, he can request for any private signing key. Hence,
we suggest a new security notion almost-full-anonymity to show the security of
our scheme. Since the almost-full anonymity not allow members’ personal secret
keys to the adversary it is somewhat weaker than the full anonymity and since
it provides members’ secret signing keys including challenged indices’ to the
adversary it is stronger than the selfless-anonymity.

4.1 The Oracles

All the oracles that we use are specified in Figure 3. We maintain a set of global
lists, which are manipulated by the oracles in the security experiments discuss

10 M. Nisansala Sevwandi Perera and Takeshi Koshiba

GKg(1λ)→ (gpk,ok, ik)

R1
$← {0, 1}P1(λ).

R2
$← {0, 1}P2(λ).

re
$← {0, 1}r(λ).

(opk, osk)← Ke(1
λ; re).

(gmpk, gmsk)
$← Ks(1

λ).
gpk← (1λ, R1, R2, opk, gmpk).
ok← (osk, re).
ik← gmsk.
Return (gpk,ok,ik).

UKg(1λ)→ (upk,usk)

(upk,usk)
$← Ks(1

λ).
Return (upk, usk).

Revoke(i,grt[i], ik,RL, reg)→ (RL, reg)
Parse grt[i] as (usk [i], pk [i])
Query reg[i]→ (i, pki, st)
If (st ̸= 0 and pki = pk[i])
then RL← RL ∪ (usk[i], pk[i])
update reg [i] to inactive;
Return RL, reg.

Sign(gpk,gsk[i],grt[i],m)→ (σ)

Parse gpk as (1λ, R1, R2, opk, gmpk).
Parse gsk[i] as (i, pki, ski, certi).

s← Sig(ski,m); r
$← {0, 1}λ.

C ← Enc(opk, ⟨i, pki, certi, s⟩; r).
π1

$← P1(1
λ, (opk, gmpk,m,C),

(i, pki, certi, s, r), R1).
σ ← (C, π1,grt[i]).
Return σ.

Verify(gpk,m, σ,RL)→ 1/0

Parse gpk as (1λ, R1, R2, opk, gmpk).
Parse σ as (C, π1,grt[i]).
Parse grt[i] as (usk[i], pki).
If V1(1

λ, (opk, gmpk,m,C), π1, R1) =1
and (usk[i], pki) /∈ RL then return 1
else return 0.

Open(gpk,ok, reg,m, σ)→ (i, τ, st)

Parse gpk as (1λ, R1, R2, opk, gmpk).
Parse ok as (osk, re).
Parse σ as (C, π1,grt[i]).
M ← Dec(osk, C).
Parse M as ⟨i, pk, cert, s⟩.
If reg[i] ̸= ε then
Parse reg[i] as (pki, sigi, status).
Else pki ← ε; sigi ← ε; st← ε.
π2 ← P2(1

λ, (opk, C, i, pk, cert, s),
(osk, re), R2).
If V1(1

λ, (opk, gmpk,m,C), π1, R1) = 0
then return (0, ε, 0).
If pk ̸= pki or reg[i] = ε or status = 0
then return (0, ε, 0).
τ ← (pki, sigi, i, pk, cert, s, π2).
Return (i, τ , st).

Judge(gpk, i,upk[i],m, σ, τ)→ 1/0

Parse gpk as (1λ, R1, R2, opk, gmpk).
Parse σ as (C, π1,grt[i]).
If (i, τ , st) = (0, ε, 0) then
return V1(1

λ, (opk, gmpk,m,C), π1, R1) =
0.
Parse τ as (p̄k, ¯sig, i′, pk, cert, s, π2).
If V2(1

λ, (C, i′, pk, cert, s), π2, R2) = 0
then return 0
If all of the following are true then return
1 else return 0:
-i = i′

-Vf(upk[i], p̄k, ¯sig)
-p̄k = pk.

IsActive(i, reg)→ (0/1)
If reg[i] ̸= ε then
Parse reg[i] as (pki, sigi, status).
Return status.

Fig. 2: Algorithms of the new fully dynamic group signature scheme

FDGS Scheme with Member registration and Verifier-local Revocation 11

later. HUL is the honest user list, which maintains the indexes of the users
who are added to the group. When the adversary corrupts any user, that user’s
index is added toCUL. SL carries the signatures that obtained from Sign oracle.
When the adversary requests a signature, the generated signature, the index and
the message are added to SL. When the adversary accesses Challenge oracle, the
generated signature is added to CL with the message sent. We use a set S to
maintain a set of revoked users.

– AddU(i): The adversary can add a user i ∈ N to the group as an honest
user. The oracle adds i to HUL and selects keys for i. It then executes the
group-joining protocol. If Issue accepts then adds the state to reg and if Join
accepts then generates gsk[i]. Finally, returns upk[i].

– CrptU(i, upk): The adversary can corrupt user i by setting its personal public
key upk[i] to upk. The oracle adds i to CUL and initializes the issuer’s state
in group-joining protocol.

– SendToIssuer(i, Min): The adversary acts as i and engages in group-joining
protocol with Issue-executing issuer. The adversary provides i and Min to
the oracle. The oracle which maintains the Issue state, returns the outgoing
message and adds a record to reg.

– SendToUser(i, Min): The adversary corrupts the issuer and engages in group-
joining protocol with Join-executing user. The adversary provides i and Min

to the oracle. The oracle which maintains the user i state, returns the out-
going message and sets the private signing key of i to the final state of Join.

– RevealU(i): The adversary can reveal secret keys of the user i. We only
provide user’s private signing key gsk[i] not his personal private key usk[i].

– ReadReg(i): The adversary can read the entry of i in reg.
– ModifyReg(i, val): The adversary can modify the contents of the record for

i in reg by setting val.
– Sign(i, m): The adversary obtains a signature σ for a given message m and

user i who is an honest user and has private signing key.
– Chalb(i0, i1,m): This oracle is for defining anonymity and provides a group

signature for the given message m under the private signing key of ib, as
long as both i0, i1 are active and honest users having private signing keys.

– Revoke(i): The adversary can revoke user i. The oracle updates the record
for i in reg and adds revocation token of i to the set S.

– Open(m, σ): The adversary can access this opening oracle with a message
m and a signature σ to obtain the identity of the user, who generated the
signature σ. If σ is queried before for Chalb, oracle will abort.

4.2 Correctness

The notion of correctness requires any signature generated by any honest and
active users should be valid and Open should correctly identify the signer for a
given message and a signature. Moreover, it requires the proof returned by Open
should be accepted by Judge. Hence, any scheme is correct if the advantage of
the correctness game is 0, for all λ ∈ N and for any adversary A.

12 M. Nisansala Sevwandi Perera and Takeshi Koshiba

AddU(i)
If i ∈ HUL ∪CUL, then return ε.
HUL← HUL ∪ {i}
gsk[i]← ε; grt[i]← ε
deciis ← cont;
(upk[i],usk[i])← UKg(1λ)
Stijn ← (gpk,upk[i],usk[i])
Stiis ← (gpk, ik, i,upk[i])
Mjn ← ε.
(Stijn,Mis, dec

i
is)← Join(Stijn,Mjn).

While (deciis = cont and decijn = cont)
then do
(Stiis,Mjn, dec

i
is)← Issue(Stiis,Mis).

(Stijn,Mis, dec
i
jn)← Join(Stijn,Mjn).

End while.
If deciis = accept then reg[i]← (Stiis, 1)
If decijn = accept then gsk[i]← (Stijn) and
grt[i] = usk[i]
Return upk[i]

CrptU(i, upk)
If i ∈ HUL ∪CUL then return ε.
CUL← CUL ∪ {i};
upk[i]← upk.
deciis ← cont.
Stiis(gpk, ik, i, upk[i])
Return 1.

ReadReg(i)
Return (reg[i])

ModifyReg(i, val)
reg[i]← val

Revoke(i)
If i /∈ HUL then return ε.
If i ∈ CL then return ε.
If IsActive(i, reg) = 0 then return ε.
S = S ∪ {grt[i]}
update reg[i]
Return 1

SendToIssuer(i,Min)
If i /∈ CUL then return ε
If deciis ̸= cont then return ε
If i /∈ HUL then return ε.
Stiis ← (gpk, ik, i,upk[i])
(Stiis,Mout, dec

i
is)← Issue(Stiis,Min).

If deciis = accept then
reg[i]← (Stiis, 1)
Return (Mout, dec

i
is)

Sign(i, m)
If i /∈ HUL then return ε.
If gsk[i] = ε then return ε.
If IsActive(i, reg) = 0 then return ε
σ = Sign(gpk, gsk[i], grt[i], m)
SL = SL ∪ {(i,m, σ)}
Return σ

SendToUser(i,Min)
If i ∈ CUL then return ε.
If i /∈ HUL then
HUL← HUL ∪ {i}
gsk[i]← ε;Min ← ε
(upk[i],usk[i])← UKg(1λ)
If decijn ̸= cont then return ε
Stijn ← (gpk,upk[i],usk[i])
(Stijn,Mout, dec

i
jn)← Join(Stijn,Min)

If decijn = accept then gsk[i] ← Stijn and
grt[i] = usk[i]
Return (Mout, dec

i
jn)

Chalb(i0, i1,m)
If i0 /∈ HUL or i1 /∈ HUL then
return ε.
If gsk[i0] = ε or gsk[i1] = ε then
return ε.
If IsActive(i0, reg) = 0 or IsActive(i1, reg)
= 0 then
return ε
σ = Sign(gpk,gsk[ib],grt[ib],m)
CL = CL ∪ {(m, σ)}
Return σ

RevealU(i)
If i /∈ HUL \ (CUL ∪CL) then
return ε.
Return gsk[i]

Open(m, σ)
If (m, σ) ∈ CL then return (ε, ε, ε)
If Verify(gpk, m, σ, S) = 0 then return (ε,
ε, ε)
Return Open(gpk,osk, reg,m, σ)

Fig. 3: Oracles

FDGS Scheme with Member registration and Verifier-local Revocation 13

We let, Advcorr
FDGS,A(λ) = Pr[Expcorr

FDGS,A(λ) = 1].
Expcorr

FDGS,A(λ)

(gpk,ok, ik)← GKg(1λ); HUL← ∅; (i,m)← A(gpk;AddU,ReadReg,Revoke);
If i /∈ HUL or gsk[i] = ε or IsActive(i, reg)= 0 then return 0.
σ ← Sign(gpk,gsk[i],m);
If Verify(gpk, m, σ, S) = 0 then return 1.
(i′, τ)← Open(gpk,ok, reg,m, σ);
If i ̸= i′ then return 1.
If Judge(gpk, i, upk[i], m, σ, τ) = 0 then return 1 else return 0.

4.3 Anonymity

The anonymity requires the signatures do not reveal the identity of the signer.
In the anonymity game, the adversary’s goal is to identify the index that is used
to create the signature. We allow the adversary A to corrupt any user and allow
him to fully corrupt the group manager. Also, A can learn secret signing keys
of any user. In full-anonymity game adversary can access all the secret keys of
any member. However, we suggest a new security notion almost-full anonymity,
which does not allow to reveal the personal secret keys of the users since the
adversary can create the tokens of the challenged ones and check with Verify.
Hence, he can easily win the game. We say that FDGS scheme is almost-fully
anonymous if the advantage of the adversary Advanon

FDGS,A(λ) is negligible for
any polynomial-time adversary.

In the game, A selects two active group members and a message to challenge
the game. He has to guess which member is used to generate the signature. He
wins if he can guess the member correctly. We allow only one guess.

We let Advanon
FDGS,A(λ) = Pr[Expanon-0

FDGS,A(λ) = 1]− Pr[Expanon-1
FDGS,A(λ) = 1].

Expanon-b
FDGS,A(λ)

(gpk,ok, ik)← GKg(1λ); HUL,CUL,SL,CL← ∅;
b∗ ← A(gpk, ik;CrptU,SendToUser,RevealU,Open,ModifyReg,Revoke,Chalb);
Return b∗;

4.4 Non-Frameability

The non-frameability ensures that any adversary unable to produce a signature
which can be attributed to an honest member, who did not produce it.

We let Advnon-fram
FDGS,A (λ) = Pr[Expnon-fram

FDGS,A (λ) = 1].
In this game, we only require that the framed member is honest. Thus, the

adversary A can fully corrupt the group manager and the opener.
Formally, the FDGS scheme is non-frameable for all λ ∈ N and for any

adversary A.
Expnon-fram

FDGS,A(λ)

(gpk,ok, ik)← GKg(1λ); HUL,CUL,SL← ∅;

14 M. Nisansala Sevwandi Perera and Takeshi Koshiba

(m, σ, i, τ)← A(gpk, ik,ok;CrptU,SendToUser,RevealU,Sign,ModifyReg);
If Verify(gpk, m, σ, S) = 0 then return 0.
If Judge(gpk, i, upk[i], m, σ, τ) = 0 then return 0.
If i /∈ HUL or (i,m, σ, τ) ∈ SL then return 0 else 1.

4.5 Traceability

The traceability ensures that the adversary A unable to produce a signature such
that unable to identify the origin of the signature. That means the adversary’s
challenge is to generate a signature that cannot be traced to an active member
of the group. In this game, A is allowed to corrupt any user and he has the
opener’s key, but he is not allowed to corrupt the group manager since he can
produce dummy users. He wins if he can create a signature, whose signer cannot
be identified or signer is an inactive member when creating the signature, or
Judge algorithm does not accept the Open algorithm’s decision.

We let Advtrace
FDGS,A(λ) = Pr[Exptrace

FDGS,A(λ) = 1].

Exptrace
FDGS,A(λ)

(gpk,ok, ik)← GKg(1λ); HUL,CUL,SL← ∅;
(m, σ)← A(gpk,ok;AddU,CrptU,SendToIssuer,RevealU,Sign,ModifyReg,Revoke);
If Verify(gpk, m, σ, S) = 0 then return 0.
(i, τ)← Open(gpk,ok, reg,m, σ);
If i = 0 or Judge(gpk, i, upk[i],m, σ, τ) = 0 then return 1 else return 0.

5 Security proof of our scheme

We can prove that our scheme is anonymous, non-frameable and, traceable ac-
cording to the experiments described above and which are discussed in [3] and [7].
Even though our scheme has used a token system as an additional attribute than
the scheme in [3], since we are not providing the tokens to the adversary and since
we have used the member’s personal secret key usk[i] and his verification key
pki as his revocation token, which cannot be used to learn about the member,
there is no impact on the security of the scheme from the token system. Since
our scheme requires a reasonable and sufficient security notion for the problem
of considering full anonymity, we use almost-full anonymity and we use security
experiments provided above instead of experiments given in [3]. However, due
to the page limitation we provide only a summary of security proof and we will
give a detailed proof of security in a full version of this paper.

5.1 Anonymity

On the assumption that P1 is computational zero knowledge for ρ1 over Dom1

and P2 is computational zero knowledge for ρ2 over Dom2, two simulations Sim1

and Sim2 can be fixed as: Π1 = P1, V1, Sim1; Π2 = P2, V2, Sim2; Π1 and Π2

are the simulation sound zero knowledge non-interactive proof systems of them
for Lρ1 and Lρ2 respectively.

FDGS Scheme with Member registration and Verifier-local Revocation 15

For any polynomial time adversary B, who will challenge the anonymity
of our scheme and who can construct polynomial time IND-CCA adversaries
A0, A1 against Encryption scheme E, an adversary As against the simulation
soundness of Π and distinguishers D1, D2 that distinguish real proofs of Π1 and
Π2 respectively, for all λ ∈ N, we say

Advanon
FDGS,B(k) ≤ Advind-cca

E,A0
(k) +Advind-cca

E,A1
(k) +Advss

Π,As
(k)

+ 2 · (Advzk
P1,Sim1,D1

(k) +Advzk
P2,Sim2,D2

(k)).

According to the Lemma 5.1 described and proved in [3] we can say, the left
side function is negligible since all the functions on the right side are negligible
under the assumptions on the security of building blocks described. This proves
the anonymity of our scheme.

5.2 Non-Frameability

If there is a non-frameability adversary B, who creates at most n(k) honest users,
where n is a polynomial and who constructs two adversaries A2, A3 against the
digital signature scheme, on the assumption that (P1, V1), (P2, V2) are sound
proof systems for ρ1, ρ2 respectively, we say

Advnon-fram
FDGS,B(k) ≤ 2−k+1 + n(k) · (Advunforg-cma

DS,A2
(k) + Advunforg-cma

DS,A3
(k)).

On the assumption that the scheme DS is secure, all the functions on the right
side are negligible, so the left side function. Thus, our scheme is non-frameable
according to the definition of DS.

5.3 Traceability

If there is a traceability adversary B, who constructs an adversary A1 against
the scheme DS, on the assumption that (P1, V1) is a sound proof system for ρ1,
we say

Advtrace
FDGS,B(k) ≤ 2−k+1 + Advunforg-cma

DS,A1
(k).

On the assumption that DS is secure against traceability, all the functions
on the right side are negligible. Because of this, the advantage of B is negligible.
Thus, it proves that our scheme is traceable.

6 Conclusion

In this paper, we have presented a simple fully dynamic group signature scheme,
that can be used as a basic scheme to develop with different approaches. We have
constructed our scheme based on the scheme in [3] and proposed Verifier-Local
revocation mechanism, which ease member revocation and convenient for large
groups. Thus, our scheme is more flexible and suitable for dynamically changing
groups, even they are large. We have shown how to achieve the security with
almost-fully anonymity, which is a limited version of fully anonymity.

16 M. Nisansala Sevwandi Perera and Takeshi Koshiba

Acknowledgments. This work is supported in part by JSPS Grant-in-Aids for
Scientic Research (A) JP16H01705 and for Scientic Research (B) JP17H01695.

References

1. Bellare, M., Micali, S.: How to sign given any trapdoor function. In: CRYPTO
1988. vol. 403, pp. 200–215. LNCS (1988)

2. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: EUROCRYPT 2003. vol. 2656, pp. 614–629. LNCS (2003)

3. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dy-
namic groups. In: CT-RSA 2005. vol. 3376, pp. 136–153. LNCS (2005)

4. Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM Journal on Computing 20(6), 1084–1118 (1991)

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: CRYPTO 2004.
vol. 3152, pp. 41–55. LNCS (2004)

6. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM-
CCS 2004. pp. 168–177. ACM (2004)

7. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: ACNS 2016. pp. 117–136. LNCS (2016)

8. Bresson, E., Stern, J.: Efficient revocation in group signatures. In: PKC 2001. vol.
1992, pp. 190–206. LNCS (2001)

9. Brickell, E.: An efficient protocol for anonymously providing assurance of the con-
tainer of the private key. Submitted to the Trusted Comp. Group (April 2003)
(2003)

10. Camenisch, J., Groth, J.: Group signatures: Better efficiency and new theoretical
aspects. In: SCN 2004. vol. 3352, pp. 120–133. LNCS (2004)

11. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: CRYPTO 2002. vol. 2442, pp. 61–76.
LNCS (2002)

12. Chaum, D., Van Heyst, E.: Group signatures. In: EUROCRYPT 1991. vol. 547,
pp. 257–265. LNCS (1991)

13. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM review 45(4),
727–784 (2003)

14. Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and
separable authorities. International Journal of Security and Networks 1(1-2), 24–
45 (2006)

15. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In: ASIACRYPT 2016. vol. 10032, pp. 373–403. LNCS (2016)

16. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter,
shorter, ring-based. In: PKC 2015. vol. 9020, pp. 427–449. LNCS (2015)

17. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS 1999. pp. 543–553. IEEE (1999)

18. Song, D.X.: Practical forward secure group signature schemes. In: ACM-CCS 2004.
pp. 225–234. ACM (2001)

