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Abstract. In group signature schemes, signers prove verifiers, their
validity of signing through an interactive protocol in zero-knowledge.
In lattice-based group signatures with Verifier-local revocation (VLR),
group members have both secret signing key and revocation token. Thus,
the members in VLR schemes should show the verifiers, that he has a
valid secret signing key and his token is not in the revoked members
list. These conditions are satisfied in the underlying interactive proto-
col provided in the first lattice-based group signature scheme with VLR
suggested by Langlois et al. in PKC 2014. In their scheme, member re-
vocation token is a part of the secret signing key and has an implicit
tracing algorithm to trace signers. For a scheme which generates mem-
ber revocation token separately, the suggested interactive protocol by
Langlois et al. is not suitable. Moreover, if the group manager wants
to use an explicit tracing algorithm to trace signers instead the implicit
tracing algorithm given in VLR schemes, then the signer should encrypt
his index at the time of signing, and the interactive protocol should show
signer’s index is correctly encrypted. This work presents a combined in-
teractive protocol that signer can use to prove his validity of signing, his
separately generated revocation token is not in the revocation list, and
his index is correctly encrypted required for such kind of schemes.

Keywords: lattice-based group signatures, verifier-local revocation,
zero-knowledge proof, interactive protocol

1 Introduction

Commitment schemes are one of the leading primitives of group signature
schemes. Commitment schemes allow a prover (signer) to commit to a value
while keeping it in secret and later the prover provides additional information to
open the commitment. A commitment scheme has three requirements, namely,
Hiding property, Binding property, and Viability. The hiding property requires
the receiver (verifier) cannot learn anything about the committed value. The
binding property requires the prover cannot change the committed value after



Maharage Nisansala Sevwandi Perera and Takeshi Koshiba

the commit step. The viability ensures if both parties, the signer and the veri-
fier follow the protocol honestly, the verifier will always recover the committed
value. Kawachi et al. [?] proposed a simple construction from lattices for string
commitment scheme. Let COM be the statistically hiding and computationally
binding commitment scheme. The statistically hiding requirement ensures any
cheating verifier (adversary) cannot distinguish the commitments of two differ-
ent strings and the computationally binding requirement ensures any polynomial
time cheating signer cannot change the committed string after the commitment
phase.

In 2014, Langlois et al. [?] presented the first lattice-based group signature
scheme with member revocation while employing most flexible revocation ap-
proach, Verifier-local revocation. Their scheme operates within the structure of
a Bonsai tree of hard random lattices, specified by a matrix A and a vector
u. In the proof of knowledge system, the signer with identity d has to prove in
zero-knowledge that he knows a vector z which is a solution to the Inhomoge-
neous Short Integer Solution instance (Ad · z) while hiding z, where the vector
z is the Bonsai signature issued on the prover’s identity d. In other words, the
signer has to prove, ||z||∞ ≤ β and Ad · z = u mod q in zero-knowledge while

hiding z, where Ad = [A0|A0
1|A

1
1| . . . |A

0
ℓ |A

1
ℓ ] ∈ Zn×(2ℓ+1)m

q . As a solution for
the above problem. they use a masking method. The masking method extends
the given vector by adding zero-blocks. In the scheme in [?], they extended
the vector z by adding ℓ suitable zero-blocks of size m to obtain a vector x =
(x0||x0

1||x1
1|| . . . ||x0

ℓ ||x1
ℓ) ∈ Z(2ℓ+1)m, such that ||x||∞ ≤ β, and A ·x = u mod q,

where x
1−d[1]
1 , . . . ,x

1−d[ℓ]
ℓ are added zero-blocks. To prove in zero-knowledge the

possession of x, Langlois et al. [?] adapted the ‘Stren Extension’ argument sys-
tem provided in [?]. Moreover, they have generated the revocation token of each
user by using the first block of user’s secret signing key and the first block of the
corresponding Bonsai tree. Thus the revocation token grt is (A0 · x0) mod q.
At the time of signing, the signer computes v = V · grt + e1 mod q, where
V ∈ Zm×n

q is a uniformly random matrix which is drawn from a random oracle
and e1 ∈ Zm is a small vector which is sampled from the Learning With Error
distribution. At the zero-knowledge argument system, the signer additionally
proves that the vector v is honestly generated.

However, in case of separating the revocation token creation from the secret
signing key, the generation of the vector v cannot prove using the interactive
protocol given in [?]. Moreover, the scheme in [?] uses an implicit tracing algo-
rithm which requires to execute Verify with the tracing message-signature pair
(M, Σ) for each member until the signer is traced. For a large group, this is not
a convenient method. The group manager may require to find the signer quickly
using an explicit tracing algorithm. For the explicit tracing algorithm, the signer
should encrypt his index d at the time of signing, and he should prove his index
d correctly encrypted in a ciphertext c. This yields a new zero-knowledge inter-
active protocol since the protocol given in [?] cannot satisfy those conditions.
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Our Contribution

The underlying interactive protocol in Langlois’s scheme allows a signer to prove
his validity using two vectors of the witness. One vector is for witnessing his
Bonsai signature and the other vector is for witnessing he is not being revoked.

However, for a situation that revocation token is not deriving from the secret
signing key, the interactive protocol given in [?] cannot be employed. Moreover,
we take into account schemes which require the signers to encrypt their index at
the signature generation such that the group manager can open signatures and
trace the signers using the explicit tracing algorithm. Thus we need a protocol
to show that the given ciphertext is correct encryption of the signer’s index. As
an answer for those requirements, we present a combined protocol which proves
that the signer is a certified group member possessing a signature on his secret
index with respect to the Bonsai tree signature, the signer’s revocation token
is correctly committed via an LWE function, and the signer’s index is correctly
encrypted based on LWE.

2 Preliminaries

2.1 Notations

For any integer k ≥ 1, we denote the set of integers {1, . . . , k} by [k]. We denote
matrices by bold upper-case letters such as A, and vectors by bold lower-case
letters, such as x. We assume that all vectors are in column form. The concate-
nation of matrices A ∈ Rn×m and B ∈ Rn×k, is denoted by [A|B] ∈ Rn×(m+k).
The concatenation of vectors x ∈ Rm and y ∈ Rk is denoted by (x∥y) ∈ Rm+k.

If S is a finite set, b
$← S means that b is chosen uniformly at random from S.

The Euclidean norm of x is denoted by ||x|| and the infinity norm is denoted by
||x||∞. Let χ be a b-bounded distribution over Z (i.e., samples that output by χ
is with norm at most b with overwhelming probability where b ≥

√
nω(log n)).

Secretβ(d) and SecretExtβ(d) are specific sets of vectors defined in [?] and
obtained by appending ℓ zero−blocks of size 0m and 03m respectively to vectors
x ∈ Z(2ℓ+1)m and x ∈ Z(2ℓ+1)3m.

2.2 Lattice-based Functions

Definition 1 (Learning With Errors (LWE) [?]). For a vector s ∈ Zn
q and χ,

the distribution As,χ is obtained by sampling a ∈ Zn
q uniformly at random and

choosing e← χ, and outputting the pair (a,aT · s+ e), where integers n,m ≥ 1,
and q ≥ 2.

Definition 2 (Inhomogeneous Short Integer Solution Problem (ISISn,m,q,β)
[?]). Given matrix A ∈ Zn×m

q with m uniformly random vectors ai ∈ Zn
q and a

uniformly random vector u ∈ Zn
q , ISISn,m,q,β asks to find a vector x ∈ Λ⊥

u (A)
such that ||x|| ≤ β.
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3 Underlying Interactive Protocol

Our Stern-like [?] interactive argument system allows a signer (prover) to con-
vince the verifier about his validity in zero-knowledge, that the signer is a valid
group member that posses a signature generated using his secret key and both
his revocation token and his index are correctly committed via an LWE function.

Let n be the security parameter and ℓ be the message length. Let modulus
q = ω(n2 log n) be prime, dimension m ≥ 2n log q, and Gaussian parameter
σ = ω(

√
n log q log n). The infinity norm bound β = ⌈σ · logm⌉ s.t (4β+1)2 ≤ q

and norm bound for LWE noises is b s.t q/b = ℓÕ(n). Let k1 := m + ℓ and
k2 := n+m+ ℓ.

– The common inputs: Matrices A = [A0|A0
1|A

1
1|...|A

0
ℓ |A

1
ℓ ] ∈ Zn×(2ℓ+1)m

q ,

B ∈ Zn×m, V ∈ Zm×n
q , and P ∈ Zk1×k2

q and vectors u
$← Zn

q , v ∈ Zm
q , and

c ∈ Zk1
q .

– The prover’s inputs: A vector x = (x0||x0
1||x1

1||...||x0
ℓ ||x1

ℓ) ∈ Secretβ(d) for
some secret d ∈ {0, 1}ℓ, vector e1 ∈ Zm, vector r ∈ Zn

q , and a vector e ∈ Zk2 .
We use f instead of e1 hereunder to discard the confusing e1with e.

– The prover’s goal is to convince the verifier in zero-knowledge that:
• A · x = u mod q and x ∈ Secretβ(d).
• ||f||∞ ≤ β and V · (B · r) + f = v mod q. (Here the revocation token is

created separately with a matrix B and a vector r instead of using A0

and x0).
• ||e||∞ ≤ b and Pe + (0k1−ℓ||⌊q/2⌋d) = c mod q (b is the norm bound
for LWE noises and p̄ = ⌊log b⌋+ 1).

Before the interaction, both the prover and the verifier form the public ma-
trices: A∗ ← MatrixExt(A), V∗ = V · B ∈ Zm×m

q , I∗ ∈ {0, 1}m×3m (I∗ is
obtained by appending 2m zero-columns to the identity matrix of order m),
P∗ = [P | 0k1×2k2 ] ∈ Zk1×3k2

q , and

Q =

(
0(k1−ℓ)×ℓ | 0(k1−ℓ)×ℓ

⌊q/2⌋Iℓ | 0ℓ×ℓ

)
∈ {0, ⌊q/2⌋}k1×2ℓ.

Then the prover uses the Decomposition-Extension technique provided in [?]
with his witness vectors as below.

– Let z1, . . . , zp ←WitnessDE(x).
– Let f̃1, . . . , f̃p ← EleDec(f), then for each i ∈ [p], let fi ← EleExt(̃fi).
– Let r̃1, . . . , r̃p ← EleDec(r), then for each i ∈ [p], let ri ← EleExt(r̃i).
– Let ẽ1, . . . , ẽp̄ ← EleDec(e), then for each i ∈ [p], let ei ← EleExt(ẽi).

At the interactive protocol, the prover instead convince the verifier that
he knows z1, . . . , zp ∈ Secretβ(d), f̃1, . . . , f̃p ∈ B3m, r̃1, . . . , r̃p ∈ B3m, and
ẽ1, . . . , ẽp ∈ B3k2 , such that:


A∗ · (

∑p
j=1 βj · zj) = u mod q;

V∗ · (
∑p

j=1 βj · rj) + I∗ · (
∑P

j=1 βj · fj) = v mod q.

P∗ · (
∑p̄

j=1 bj · ej) +Q · d∗ = Pe+ (0k1−ℓ||⌊q/2⌋d) = c mod q.
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Description of the protocol:

1. Commitment: The prover samples randomness ρ1, ρ2, ρ3 for COM and the
following uniformly random objects:

c
$← {0, 1}ℓ;

πz,1, . . . , πz,p
$← S;πf,1, . . . , πf,p

$← S3m;πr,1, . . . , πr,p
$← S3m;

πe,1, . . . , πe,p̄
$← S3k2

; τ
$← S2ℓ;

kz,1, . . . ,kz,p
$← Z(2ℓ+1)3m

q ;kf,1, . . . ,kf,p
$← Z3m

q ;

kr,1, . . . ,kr,p
$← Z3m

q ;ke,1, . . . ,ke,p̄
$← Z3k2

q ;kd
$← Z2ℓ

q .

(1)

Then the prover sends the following commitment CMT = (c1, c2, c3) to the
verifier.

c1 = COM(c, {πz,j , πf,j , πr,j}pj=1),A
∗ · (

∑p
j=1 βj · kz,j);

V∗ · (
∑p

j=1 βj · kr,j) + I∗ · (
∑p

j=1 βj · kf,j);

{πe,j , }p̄j=1;P
∗(
∑p̄

j=1 bjke,j) +Qkd; τ ; ρ1),

c2 = COM({Tc ◦ πz,j(kz,j), πf,j(kf,j), πr,j(kr,j)}pj=1;

{πe,j(ke,j)}p̄j=1; τ(kd); ρ2),

c3 =

COM({Tc ◦ πz,j(zj + kz,j), πf,j(fj + kf,j), πr,j(rj + kr,j)}pj=1;

{πe,j(ej + ke,j)}p̄j=1; τ(d
∗ + kd); ρ3).

(2)

2. Challenge: The verifier sends a challenge Ch
$← {1, 2, 3} to the prover.

3. Response: Depending on the challenge, the prover sends the response RSP
computed as follows.

– Case Ch = 1: Let d1 = d ⊕ c. For each j ∈ [p], let uz,j = Tc ◦
πz,j(zj);wz,j = Tc ◦ πz,j(kz,j);uf,j = πf,j(fj);wf,j = πf,j(kf,j);ur,j =
πr,j(rj);wr,j = πr,j(kr,j). For each j ∈ [p̄], let ue,j = πe,j(ej);we,j =
πe,j(ke,j). Let ud = τ(d∗);wd = τ(kd). Then send,

RSP = (d1, {uz,j ,wz,j ,uf,j ,wf,j ,ur,j ,wr,j}pj=1,

{ue,j ,we,j}p̄j=1,ud,wd, ρ2, ρ3). (3)

– Case Ch = 2: Let d2 = c. For each j ∈ [p], let ϕz,j = πz,j ;ϕf,j =
πf,j ;ϕr,j = πr,j ; sz,j = zj + kz,j ; sf,j = fj + kf,j ; sr,j = rj + kr,j . For
each j ∈ [p̄], let ϕe,j = πe,j ; se,j = ej +ke,j . Let τ̂ = τ and sd = d∗ +kd.
Then send,

RSP = (d2, {ϕz,j , ϕf,j , ϕr,j , sz,j , sf,j , sk,j}pj=1,

{ϕe,j , se,j}p̄j=1, τ̂ , sd, ρ1, ρ3) (4)
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– Case Ch = 3: Let d3 = c. For each j ∈ [p], let ψz,j = πz,j ;ψf,j =
πf,j ;ψr,j = πr,j ;hz,j = kz,j ;hf,j = kf,j ;hr,j = kr,j . For each j ∈ [p̄], let
ψe,j = πe,j ;he,j = ke,j . Let τ̃ = τ and hd = kd. Then send,

RSP = (d3, {ψz,j , ψf,j , ψr,j ,hz,j ,hf,j ,hk,j}pj=1,

{ψe,j ,he,j}p̄j=1, τ̃ ,hd, ρ1, ρ2) (5)

4. Receiving the response RSP, the verifier proceeds as follows:

– Ch = 1: Parse RSP as in (??).
Check that ∀ ∈ [p] : uz,j ∈ SecretExt(d1),uf,j ∈ B3m, ur,j ∈ B3m,
∀j ∈ [p̄] : ud ∈ B2ℓ,ue,j ∈ B3k2 , and

c2 = COM({wz,j ,wf,j ,wr,j}pj=1; {we,j}p̄j=1;wd; ρ2),

c3 = COM({uz,j +wz,j ,uf,j +wf,j ,ur,j +wr,j}pj=1;

{ue,j +we,j}p̄j=1; {ud +wd}; ρ3).
(6)

– Ch = 2: Parse RSP as in (??). Check that :

c1 = COM(d2, {ϕz,j , ϕf,j , ϕr,j}pj=1,A
∗(
∑p

j=1 βj · sz,j)− u;

V∗(
∑p

j=1 βj · sr,j) + I∗(
∑p

j=1 βj · sf,j)− v;

{ϕe,j}p̄j=1;P
∗ · (

∑p̄
j=1 bj · se,j) +Qsd − c; τ̂ ; ρ1),

c3 = COM({Td2 ◦ ϕz,j(sz,j), ϕf,j(sf,j), ϕr,j(sr,j)}
p
j=1;

{ϕe,j(se,j)}p̄j=1; τ̂(sd); ρ3).

(7)

– Ch = 3:Parse RSP as in (??). Check that :

c1 = COM(d3, {ψz,j , ψf,j , ψr,j}pj=1,A
∗ · (

∑p
j=1 βj · hz,j);

V∗ · (
∑p

j=1 βj · hr,j) + I∗ · (
∑p

j=1 βj · hf,j);

{ϕe,j}p̄j=1;P
∗ · (

∑p̄
j=1 bj · he,j) +Qhd; τ̃ ; ρ1),

c2 = COM({Td3
◦ ψz,j(hz,j), ψf,j(hf,j), ψr,j(hr,j)}pj=1;

{ψe,j(he,j), }p̄j=1; τ̃(hd); ρ2).

(8)

The verifier outputs Valid if and only if all the conditions hold. Otherwise,
he outputs Invalid.

4 Analysis of the protocol

Theorem 1. Let COM be a statistically hiding and computationally binding
string commitment scheme. The interactive protocol is a zero-knowledge ar-
gument of knowledge with perfect completeness and soundness error 2/3 with
(O(ℓm) log β + O(k2) log b) log q communication cost. Thus it satisfies the fol-
lowings.
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– There exists an efficient simulator that, on input (A,u,B,V,v,P, c), out-
puts an accepted transcript which is statistically close to that produced by the
real prover.

– There exists an efficient knowledge extractor that, on input a commitment
CMT and 3 valid responses (RSP (1), RSP (2), RSP (3)) corresponding to all
3 possible values of the challenging Ch, outputs vectors (y, f′, r′, e′) such that:

1. y = (y0||y0
1||y1

1|| . . . ||y0
ℓ ||y1

ℓ) ∈ Secretβ(d) for some d ∈ {0, 1}ℓ, and
A · y = u mod q.

2. ||f′||∞ ≤ β and V · (B · r) + f′ = v mod q.
3. ||e′||∞ ≤ b and Pe′ + (0k1−ℓ||⌊q/2⌋d) = c mod q.

4.1 Completeness and Soundness

An honest prover, with a valid witness (x, f, r, e) for some d ∈ {0, 1}ℓ, can
always obtain z1, . . . , zp ∈ Secretβ(d), f1, . . . , fp ∈ B3m, r1, . . . , rp ∈ B3m, and
e1, . . . , ep̄ ∈ B3k2

via the Decomposition-Extension technique [?]. If he follows
the protocol, he should always be accepted by the verifier. In this manner, the
protocol has perfect completeness.

The protocol admits a soundness error 2/3, which is natural for typical Stern-
like protocols. However, this error can be made negligible by repeating the pro-
tocol t = ω(log n) times in parallel.

4.2 Communication Cost

The KTX scheme [?] COM outputs an element of Zn
q . Therefore the commitment

CMT has bit-size 3n log q = Õ(n). The response RSP is executed by, p permu-
tations in S, p permutations in S3m, p̄ permutations in S3k2

, one permutation

in 2ℓ, p vectors in Z(2ℓ+1)3m
q , p vectors in Z3m

q , p̄ vectors in Z3k2
q , and one vector

in Z2ℓ
q .
In this manner, the bit size of RSP is bounded by (O(ℓm)p+O(k2)p̄) log q,

where p = ⌊log β⌋+ 1 and p = ⌊log b⌋+ 1. Thus the overall communication cost
of the protocol is bounded by (O(ℓm) log β +O(k2) log b) log q.

4.3 Zero-Knowledge Property

If COM is statistically hiding, we can prove that, the interactive protocol is
statistical zero-knowledge argument.

First, construct a PPT simulator SIM interacting with a verifier V such that,
by giving only the public inputs, SIM outputs with probability close to 2/3 a
simulated transcript that is statistically close to the outputs of an honest prover
in the real interaction. From the public input (A, u, B, V, v, P, c) given by
the protocol, both SIM and V acquire matrices, A∗,V∗, I∗, P∗, and Q. Then
SIM starts simulation by selecting a random Ch ∈ {1, 2, 3}. This is a prediction
of the challenge value that V will not choose.
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Case Ch = 1 : SIM computes the vectors z′1, . . . , z
′
p ∈ Z(2ℓ+1)3m

q such that

A∗ · (
∑p

j=1 βj · z′j) = u mod q, r′1, . . . , r
′
p ∈ Z3m

q and f′1, . . . , f
′
p ∈ Z3m

q such that

V∗ · (
∑p

j=1 βj · r′j) + I∗ · (
∑p

j=1 βj · f
′
j) = v mod q, and e′1, . . . , e

′
p̄ ∈ Z3k

q and

d′ ∈ Z2ℓ
q , such that P∗ · (

∑p̄
j=1 bj ·e′j)+Q ·d′ = c mod q by using linear algebra.

Then SIM samples objects as in equation (??) and sends commitment
CMT = (c′1, c

′
2, c

′
3) to V, where



c′1 = COM(c, {πz,j , πf,j , πr,j}pj=1,A
∗ · (

∑p
j=1 βj · kz,j);

V∗ · (
∑p

j=1 βj · kr,j) + I∗ · (
∑p

j=1 βj · kf,j)

{πe,j}p̄j=1,P
∗ · (

∑p̄
j=1 bj · ke,j) +Qkd; τ ; ρ1),

c′2 = COM({Tc ◦ πz,j(kz,j), πf,j(kf,j), πr,j(kr,j)}pj=1;

{πe,j(ke,j)}p̄j=1; τ(kd); ρ2),

c′3 = COM({Tc ◦ πz,j(z′j + kz,j), πf,j(f
′
j + kf,j), πr,j(r

′
j + kr,j)}pj=1;

{πe,j(e′j + ke,j)}p̄j=1; τ(d
′ + kd); ρ3).

(9)

For a challenge Ch from V, SIM responds as follows:
- If Ch = 1: Output ⊥ and abort.
- If Ch = 2: Send,
RSP = (c, {πz,j , πf,j , πr,j , z′j + kz,j , f

′
j + kf,j , r

′
j + kr,j}pj=1,

{πe,j , e′j + ke,j}p̄j=1, d
′ + kd, τ, ρ1, ρ3).

- If Ch = 3: Send, RSP = (c, {πz,j , πf,j , πr,j ,kz,j ,kf,j ,kr,j}pj=1,

{πe,j ,ke,j}p̄j=1, τ, ρ1, ρ2).

Case Ch = 2 : SIM samples randomness ρ1, ρ2, ρ3 for COM and

d̂
$← {0, 1}ℓ, c $← {0, 1}ℓ; d′ $← B2ℓ;

z′1, . . . , z
′
p

$← SecretExt(d); f′1, . . . , f
′
p

$← B3m; r′1, . . . , r
′
p

$← B3m;

e′1, . . . , e
′
p̄

$← B3k;

πz,1, . . . , πz,p
$← S;πf,1, . . . , πf,p

$← S3m;πr,1, . . . , πr,p
$← S3m;

πe,1, . . . , πe,p̄
$← S3k;

kz,1, . . . ,kz,p
$← Z(2ℓ+1)3m

q ;kf,1, . . . ,kf,p
$← Z3m

q ;kr,1, . . . ,kr,p
$← Z3m

q ;

ke,1, . . . ,ke,p̄
$← Z3k

q ;kd
$← Z2ℓ

q , τ
$← S2ℓ.

Next SIM forms and sends commitment CMT as the same manner as in
(??).

For a challenge Ch from V, SIM responds as follows:
- If Ch = 1: (d̂⊕ c {Tc ◦ πz,j(z′j), Tc ◦ πz,j(kz,j), πf,j(f

′
j), πf,j(kf,j),

πr,j(r
′
j), πr,j(kr,j)}pj=1, {πe,j(e′j), πe,j(ke,j)}p̄j=1, τ(d

′), τ(kd)).
- If Ch = 2: Output ⊥ and abort.
- If Ch = 3: Send, RSP computed as in the case (Ch = 1, Ch = 3).
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Case Ch = 3 : SIM samples randomness as in Ch = 2 and sends the
commitment CMT = (c′1, c

′
2, c

′
3) to V, where c′2, c

′
3 are computed as in (??),

and

c′1 = COM (c, {πz,j , πe,j , πr,j}pj=1,A
∗ · (

p∑
j=1

βj · (z′j + kz,j))− u;

V∗ · (
p∑

j=1

βj · (r′j + kr,j)) + I∗ · (
p∑

j=1

βj · (f′j + kf,j))− v;

{πe,j}p̄j=1;P
∗

p̄∑
j=1

bj(e
′
j + ke,j) +Q(d′ + kd)− c; τ ; ρ1).

For a challenge Ch from V, SIM responds as follows:
- If Ch = 1: Send, RSP computed as in the case (Ch = 2, Ch = 1).
- If Ch = 2: Send, RSP computed as in the case (Ch = 1, Ch = 2).
- If Ch = 3: Output ⊥ and abort.
Since COM is statistically hiding, the distribution of the commitment CMT

and the distribution of the challenge Ch from V for every case considered above
are statistically close to those in the real interaction. Hence, the probability that
the simulator outputs ⊥ is negligibly close to 1/3. Thus, the simulator SIM can
successfully imitate the honest prover with probability negligibly close to 2/3.

4.4 Argument of Knowledge

Here we prove that, if COM is computationally binding, then the given protocol
is an argument of knowledge. For a given commitment CMT and three valid
responses RSP (1), RSP (2), RSP (3) to all three possible values of the challenge
Ch, a valid witness can be extracted.

c1 = COM(d2, {ϕz,j , ϕf,j , ϕr,j}pj=1,A
∗ · (

∑p
j=1 βj · sz,j)− u;

V∗ · (
∑p

j=1 βj · sr,j) + I∗ · (
∑p

j=1 βj · sf,j)− v;

{ϕe,j}p̄j=1;P
∗ · (

∑p̄
j=1 bj · se,j) +Qsd − c; τ̂ ; ρ1)

= COM(d3, {ψz,j , ψf,j , ψr,j}pj=1,A
∗ · (

∑p
j=1 βj · hz,j);

V∗ · (
∑p

j=1 βj · hr,j) + I∗ · (
∑p

j=1 βj · hf,j);

{ψe,j}p̄j=1;P
∗ · (

∑p̄
j=1 bj · he,j) +Qhd; τ̃ ; ρ1),

c2 = COM({wz,j ,wf,j ,wr,j}pj=1, {we,j}p̄j=1,wd; ρ2)

= COM({Td3
◦ ψz,j(hz,j), ψf,j(hf,j), ψr,j(hr,j)}pj=1;

{ψe,j(he,j)}p̄j=1, τ̃(hd); ρ2),

c3 = COM({uz,j +wz,j ,uf,j +wf,j ,ur,j +wr,j}pj=1;

{ue,j +we,j}p̄j=1, {ud +wd}; ρ3)
= COM({Td2 ◦ ϕz,j(sz,j), ϕf,j(sf,j), ϕr,j(sr,j)}

p
j=1;

{ϕe,j(se,j)}p̄j=1, τ̂(sd); ρ3).
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The computational binding property of COM implies that:



d2 = d3;

ud ∈ B2ℓ; τ̂ = τ̃ ;wd = τ̃(hd);ud +wd = τ̂(sd);

∀j ∈ [p] : ϕz,j = ψz,j ;wz,j = Td2 ◦ ϕz,j(hz,j) and

uz,j +wz,j = Td2 ◦ ϕz,j(sz,j);
∀j ∈ [p] : ϕf,j = ψf,j ;wf,j = ϕf,j(hf,j) and uf,j +wf,j = ϕf,j(sf,j);

∀j ∈ [p] : ϕr,j = ψr,j ;wr,j = ϕr,j(hr,j) and ur,j +wr,j = ϕr,j(sr,j);

∀j ∈ [p̄] : ϕe,j = ψe,j ;we,j = ϕe,j(he,j) and ue,j +we,j = ϕe,j(se,j);

A∗ · (
∑p

j=1 βj · (sz,j − hz,j)) = u mod q;

V∗ · (
∑p

j=1 βj · (sr,j − hr,j)) + I∗ · (
∑p

j=1 βj · (sf,j − hf,j)) = v mod q;

P∗ · (
∑p̄

j=1 bjse,j) +Qsd − c = P∗ · (
∑p̄

j=1 bjhe,j) +Qhd mod q.

For each j ∈ [p], let y′
j = (sz,j−hz,j). Then Td2 ◦ϕz,j(y′

j) = Td2 ◦ϕz,j(sz,j)−
Td2 ◦ ϕz,j(hz,j) = uz,j ∈ SecretExt(d1). Thus, ϕz,j(y

′
j) ∈ SecretExt(d1 ⊕ d2).

Let d̄ = d1 ⊕ d2, then for all j ∈ [p], y′
j ∈ SecretExt(d̄), since the permutation

ϕz,j ∈ S preserves the arrangements of the blocks of y′
j . By removing the last 2m

coordinates in each 3m-block of y′ obtain vectors y′ ∑p
j=1 βj · y′

j ∈ Z(2ℓ+1)3m
q ,

and y ∈ Z(2ℓ+1)m. Now we can declare

||y||∞ ≤ ||y′||∞ ≤
p∑

j=1

βj · ||yj ||∞ =

p∑
j=1

βj · 1 = β.

Moreover, since y′
j ∈ SecretExt(d̄) for all j ∈ [p], we have that y ∈ Secretβ(d̄)

and, A ·y = A∗ ·y′ = A∗ ·
∑p

j=1 βj ·yj = A∗(
∑p

j=1 βj ·(sz,j−hz,j)) = u mod q.

For each j ∈ [p], let f′j = (sf,j−hf,j). Then ϕf,j(f
′
j) = ϕf,j(sf,j)−ϕe,j(hf,j) =

uf,j ∈ B3m, which implies that f′j ∈ B3m. Let f̂ =
∑p

j=1 βj · f
′
j ∈ Z3m and by

dropping the last 2m coordinates from f̂ obtain f′ ∈ Zm. We can declare,

||f′||∞ ≤ ||̂f||∞ ≤
p∑

j=1

βj · ||f′j ||∞ =

p∑
j=1

βj · 1 = β.

Moreover, for each j ∈ [p], let r′j = (sr,j − hr,j). Then ϕr,j(r
′
j) = ϕr,j(sr,j)−

ϕr,j(hr,j) = ur,j ∈ B3m, which implies that r′j ∈ B3m. Let r̂ =
∑p

j=1 βj ·r′j ∈ Z3m

and by dropping the last 2m coordinates from r̂ obtain r′ ∈ Zm. We can declare,

||r′||∞ ≤ ||r̂||∞ ≤
p∑

j=1

βj · ||r′j ||∞ =

p∑
j=1

βj · 1 = β.

We can obtain the relation:

V∗ · r̂+ I∗ · f̂ = v mod q ⇐⇒ V∗ · (B · r′) + f′ = v mod q.
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Let d∗ = sd − hd = τ̂−1(ud). Then it follows that d∗ ∈ B2ℓ. Now let d∗ =
(d1, . . . , dℓ, dℓ+1, . . . , d2ℓ) and let d = (d1, . . . , dℓ) ∈ 0, 1ℓ.

For each j ∈ [p̄], let e′j = (se,j−he,j). Then ϕe,j(e
′
j) = ϕe,j(se,j)−ϕe,j(he,j) =

ue,j ∈ B3k, which implies that e′j ∈ B3k. Let ê =
∑p̄

j=1 bj · e′j and by dropping

the last 2k coordinates from ê obtain e′ ∈ Zk. We can declare,

||e′||∞ ≤ ||ê||∞ ≤
p̄∑

j=1

bj · ||e′j ||∞ =

p∑
j=1

bj · 1 = b.

Now, ||e′||∞ ≤ b, and P∗e′ +Qd∗ = Pe′ + (0k−ℓ||⌊q/2⌋d) = c mod q.
In conclusion, the constructed efficient knowledge extractor which satisfies

all the conditions stated in Theorem ?? outputs vectors (y, f′, r′, e′).The vector
f′(e1) can extract from e. But, for the ease of understanding and to reduce the
complexity we prove the witness of f′(e1) and extraction separately.

5 Conclusion

This paper presents a combined interactive protocol that signer can use to prove
his validity of signing, his revocation token which is generated separately without
deriving from secret signing key is not in the revocation list, and his index is
correctly encrypted. Since the proofs in proposed protocol not relying on each
other this can be used in any scheme with slight modifications. For instance, the
schemes like [?] can use the proposed protocol by adding member registration.
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