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Abstract. This paper presents a lattice-based group signature scheme
that provides both member registration and member revocation with
verifier-local revocation. Verifier-local revocation (VLR) seems to be the
most suitable revocation approach for any group since when a member
is revoked VLR requires to update only verifiers. However, presenting
a fully dynamic and fully secured lattice-based group signature scheme
with verifier-local revocation is a significant challenge. Thus, we suggest a
new security notion to prove the security of VLR schemes with member
registration. As a result, we present a dynamical-almost-fully secured
fully dynamic group signature scheme from lattices with VLR.
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1 Introduction

In the setting of group signature scheme, each group member is capable of sign-
ing messages on behalf of the group anonymously (anonymity). On the other
hand, the group manager should be able to identify the misbehaved members
(traceability). Group signatures were initially introduced by Chaum and van
Heyst [13] in 1991 and later made it scalable and collusion-resistance by Ate-
niese et al. [3]. The model proposed by Bellare et al. [4] (BMW03 model) gave
the formal and strong security notions, “full-anonymity” and “full-traceability”
for static group signatures. Then, Bellare et al. [5] presented a scheme which uses
the BMW03 model to deliver a dynamic group signature scheme. However, their
scheme supports only member registration. Recently, Bootel et al. [7] provided
a security definition for fully dynamic group signatures.

Lattice-based cryptography has been an interesting research topic during the
last decade since it provides security against the threat of quantum attacks. The
first lattice-based group signature scheme was proposed by Gordon et al. [16].
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Then by achieving anonymity with a token system Camenisch et al. [12] extended
the scheme proposed in [16]. Both of the schemes faced a problem of increasing
the size of the signatures with the number of group members N. However, the
scheme proposed by Laguillaumie et al. [18] was able to give a solution for the
linear size problem. But, the scheme in [18] required relatively large parameters.
Later, Ling et al. [22] provided a scheme with several prominent advantages
such as simple construction and shorter size of keys and signatures. Moreover,
their scheme has a strong security with the requirements of the BMW03 model.
Nguyen et al. [26] also presented a simpler efficient scheme from lattices. How-
ever, none of the above schemes support dynamic groups.

The first lattice-based group signature that facilitates member revocation
was proposed by Langlois et al. [19] in 2014. Their scheme manages the member
revocation with Verifier-local Revocation (VLR) approach which requires updat-
ing only the verifiers with the latest information about revoked members. How-
ever, they were unable to maintain member registration. Moreover, the scheme
in [19] relies on a weaker security notion called selfless-anonymity. The scheme
proposed by Libert et al. [20] provides only member registration. However, full
dynamicity is achieved by the scheme suggested by Ling et al. [23]. They have
employed accumulators to update member information when a member is re-
voked or registered. Thus, the first lattice-based fully dynamic group signature
scheme [23] uses Merkle tree accumulators. However, when a new member joins
the group, the group manager has to update registration table, Merkle tree, and
the user counter. Further, when a member is revoked, the group manager has to
update both the registration table and the tree. When signing and verifying, the
members and the verifiers have to download the respective information. Thus, it
increases the workload of both the members and the verifiers. This yields con-
structing a group signature scheme based on lattices, which does not increase
the workload of the current members, managers, and verifiers when achieving
the full dynamicity.

1.1 Our Contribution

This paper presents a fully dynamic group signature scheme from lattices with
verifier-local revocation and member registration.

However, gaining full anonymity (which was described in the BMW03 model
[4] and which was used in [5]) for VLR scheme is a challenging problem. In
case of the full-anonymity game between a challenger and an adversary, the
challenger provides all the secret signing keys to the adversary. The previous
VLR schemes constructed the revocation token by taking the part of the secret
signing key of the relevant member. Thus, if we provide all the secret signing
keys to the adversary, he can obtain the tokens of the members and check which
member’s index is used to generate the challenging signature. In our scheme,
we separate the construction of the revocation tokens from the generation of
the secret signing keys. Thus, we can provide all the secret signing keys to the
adversary as in the full anonymity, without any issue.
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Even though the full anonymity does not manage revocation queries, we allow
the adversary to request revocation tokens. But, we will not provide challenged
members’ tokens to the adversary, or we will not generate challenged signatures
for the member-indices whose tokens are already revealed by the adversary. This
restricted version of the full-anonymity is known as almost-full anonymity. We
adapt the almost-full anonymity suggested in [28] to cope with registration query
to prove the security of our scheme. Thus, we propose a new security notion
called dynamical-almost-full anonymity which is a restricted version of the full
anonymity and extended version of the almost-full anonymity for fully dynamic
group signatures with VLR and member registration.

Since the previous VLR schemes like the scheme in [19] have not considered
member registration separately, they generated members’ keys at the setup stage
with the group public key. In our scheme, we separate member registration and
allow new members to join the group with their secret keys as in [20]. Thus, in
the member registration, we provide a simple method to generate keys for the
members by using the group public key. First, we use trapdoors [15] to generate
the group public key and the authority keys at the setup phase. Since the group
manager needs to know the revoking member’s revocation token, we allow new
members to generate only their secret signing keys at the joining protocol. The
group manager issues the revocation token with the member certification. When
a member misbehaved, the group manager can revoke the misbehaved member by
adding that member’s token to the list called revocation list (RL) and updating
the verifiers with the latest RL as any VLR scheme. When verifying a signature,
verifiers have to check the validity of the signer using the latest RL.

Moreover, we provide an explicit tracing algorithm to trace signers. The im-
plicit tracing algorithm presented in VLR requires executing Verify for each mem-
ber until the relevant member is found. Since the time consumption is high in
the implicit tracing algorithm, it is not convenient for large groups. Hence, if
necessary the tracer can use the explicit tracing algorithm instead of using the
implicit tracing algorithm for tracing signers.

2 Preliminaries

2.1 Notations

For any integer k ≥ 1, we denote the set of integers {1, . . . , k} by [k]. We denote
matrices by bold upper-case letters such as A, and vectors by bold lower-case
letters, such as x. We assume that all vectors are in column form. The concate-
nation of matrices A ∈ Rn×m and B ∈ Rn×k is denoted by [A|B] ∈ Rn×(m+k).
The concatenation of vectors x ∈ Rm and y ∈ Rk is denoted by (x∥y) ∈ Rm+k.

If S is a finite set, b
$← S means that b is chosen uniformly at random from S.

If S is a probability distribution b
$← S means that b is drawn according to S.

The Euclidean norm of x is denoted by ||x|| and the infinity norm is denoted by
||x||∞. Let χ be a b-bounded distribution over Z (i.e., samples that output by χ
is with norm at most b with overwhelming probability where b =

√
nω(log n)).
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2.2 Lattices

Let q be a prime and B = [b1| · · · |bm] ∈ Zr×m
q be linearly independent vectors

in Zr
q. The r-dimensional lattice Λ(B) for B is defined as

Λ(B) = {y ∈ Zr | y ≡ Bx mod q for some x ∈ Zm
q },

which is the set of all linear combinations of columns of B. The value m is the
rank of B.

We consider a discrete Gaussian distribution with respect to a lattice. The
Gaussian function centered in a vector c with parameter s > 0 is defined
as ρs,c(x) = e−π∥(x−c)/s∥2

and the corresponding probability density func-
tion proportional to ρs,c is defined as Ds,c(x) = ρs,c(x)/s

n for all x ∈ Rn.
With respect to a lattice Λ the discrete Gaussian distribution is defined as
DΛ,s,c(x) = Ds,c(x)/Ds,c(Λ) = ρs,c(x)/ρs,c(Λ) for all x ∈ Λ. Since Zm is also
a lattice, we can define a discrete Gaussian distribution for Zm. By DZm,σ, we
denote the discrete Gaussian distribution for Zm around the origin with the
standard deviation σ.

2.3 Lattice-Related Computational Problems

The security of our scheme relies on the hardness of the two lattice-based prob-
lems defined below.

Learning With Errors (LWE)

Definition 1. Learning With Errors (LWE) [27] is parametrized by integers
n,m ≥ 1, and q ≥ 2. For a vector s ∈ Zn

q and χ, the distribution As,χ is obtained
by sampling a ∈ Zn

q uniformly at random and choosing e ← χ, and outputting

the pair (a,aT · s+ e).

There are two LWE problems. They are Search-LWE and Decision-LWE.
While Search-LWE is to find the secret s given LWE samples, Decision-LWE
is to distinguish LWE samples and samples chosen according to the uniformly
distribution. We use the hardness of Decision-LWE problem.

For a prime power q, b ≥
√
nω(log n), and distribution χ, solving LWEn,q,χ

problem is at least as hard as solving SIV Pγ (Shortest Independent Vector Prob-

lem), where γ = Õ(nq/b) [15,29].

Short Integer Solution (SISn,m,q,β) SIS was first discussed in seminal work
of Ajtai [2]. SIS problem asks to find a sufficiently short nontrivial integer com-
bination of given uniformly random elements of a certain large finite additive
group, which sums to zero [27].

Definition 2. Short Integer Solution (SISn,m,q,β [27, 29]) is as follows. Given
m uniformly random vectors ai ∈ Zn

q , forming the columns of a matrix A ∈
Zn×m
q , find a nonzero vector x ∈ Zm such that ||x|| ≤ β and Ax = 0 mod q.
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Table 1. Parameters of the scheme

Parameter Value or Asymptotic bound

Modulus q ω(n2 logn)

Dimension m ≥ 2n log q

Gaussian parameter σ ω(
√
n log q log n)

Integer norm bound β ⌈σ · logm⌉
Number of protocol repetitions t ω(log n)

For any m, β, and for any q >
√
nβ, solving SISn,m,q,β problem with non-

negligible probability is at least as hard as solving SIV Pγ problem, for some
γ = β·O(

√
n) [15].

2.4 Lattice-Related Algorithms

We use a randomized nearest-plane algorithm SampleD, which is discussed in [15]
and [24] in our scheme’s construction. The algorithm SampleD samples from a
discrete Gaussian DΛ,s,c over any lattice Λ. The version given in [24] is defined
below.

– SampleD(R, A, u, σ) takes as inputs a vector u in the image of A, a trap-
door R, and σ = ω(

√
n log q log n), and outputs x ∈ Zm sampled from the

distribution DZm,σ, where x should satisfy the condition A · x = u mod q.

Preimage sampleable trapdoor functions (PSTFs) [15] are defined by proba-
bilistic polynomial-time algorithms. We use PSTFs discussed in [1, 15,24].

– GenTrap(n, m, q) is an efficient randomized algorithm. For any given integers
n ≥ 1, q ≥ 2, and sufficiently large m = O(n log q), GenTrap(n, m, q) outputs
a matrixA ∈ Zn×m

q and a trapdoor matrixR. The distribution of the output
A is negl(n)-far from the uniform distribution.

2.5 Other Tools

We denote the security parameter by n, and the maximum number of expected
users in a group by N = 2ℓ. Depending on the security parameter n, other
parameters we used are as in Table 1.

In the construction of our scheme, we use one-time signature scheme OT S
= (OGen, OSign, OVer) [25]. OT S schemes are based on one-way functions, and
they are simpler to implement and are computationally efficient than trapdoor
functions. OT S schemes are digital signature schemes. Since OT S requires the
signer to generate keys for each message to be signed newly, keys formed for
each message are unique for the particular messages. OGen is the key generation
algorithm, which takes as an input (1n), and outputs a signing, verification key
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pair (osk, ovk). OSign is the signing algorithm, which uses the key osk and
a message M as inputs, and outputs a signature Σ. OVer is the verification
algorithm, which is a deterministic algorithm that takes as inputs the key ovk,
the message M, and the signature Σ to validate the signature Σ. Depending on
the validation of the signature, OVer outputs ⊤ or ⊥ [14].

3 Achieving security for VLR schemes with registration

This section first describes the security requirements of group signatures. Then
we discuss VLR group signature schemes. Later, we explain the difficulties of
achieving full-anonymity for VLR group signature schemes and put forward
a new security notion called dynamical-almost-full anonymity that manages
anonymity of VLR group signature schemes with member registration.

3.1 Security requirements

The group signatures, which were introduced by Chaum and van Heyst [13] pro-
vided two main features called anonymity and traceability. Anonymity requires
any adversary is not able to discover the signer. Traceability requires no one can
create a signature that cannot be traced by the group manager. Nevertheless, in
last decades, more security requirements have been presented. Bellare et al. [4]
(BMW03 model) provided two appropriate security notions called full-anonymity
and full-traceability that formalize the previous security requirements.

Full-anonymity requires no adversary can identify the signer same as in the
anonymity suggested in [13]. But, in the full-anonymity, the adversary is stronger
since he may corrupt all the members including the one issuing the signature.
Moreover, he can view the outcome that group manager sees when tracing a
signer.

Full-traceability also much stronger than the traceability in the past and it
also acts as a strong version of collusion-resistance. Thus, a group of colluding
group members who pool their secret keys cannot create a signature that belongs
to none of them; even they know the secret key of the group manager. Thus, in
the full traceability game, the adversary can query signatures for any message
and index, and he can corrupt any member.

In the scheme in [5], non-frameability is separated from the traceability. In
traceability game, the tracing manager’s secret key is provided to the adver-
sary but, the group manager’s secret key is not provided. Thus, the adversary
cannot create untraceable dummy members. But in non-frameability, the group
manager’s and the tracing manager’s secret keys are given to the adversary.

3.2 VLR group signatures

The functionality of member revocation is a desirable requirement of any group
signature since misbehaved members should be removed from the group and
restricted them signing on behalf of the group. The simplest method is generating
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all the keys newly including public keys and secret keys (except for revoking
member) when a member is revoked and broadcasting the new keys to existing
members and verifiers. But this method is not appropriate for large groups.
Bresson and Stern [8] suggested an approach that requires signers to prove that
his member certification is not in the public revocation list at the time of signing.
Since the signature size increases with the number of revoked members in this
method, it is also not suitable for large groups. Later Camenisch et al. [11]
proposed an approach using dynamic accumulators, where the accumulator is
an algorithm that allows hashing a large set of inputs to one shorter value, and
the dynamic accumulator allows to add or delete inputs dynamically. However,
this approach requires members to keep track of revoked user information, and
needs to update their membership. Thus in this approach, workloads of the
current group members increase. A different revocation method called Verifier-
local Revocation (VLR) was proposed by Brickell [9] and formalized by Boneh
et al. [6] in their group signature scheme. Other than the scheme in [6], schemes
like [21,28] use VLR to manage member revocation.

Verifier-local Revocation (VLR) uses a token system to manage the status
of the members. Each member has a revocation token other than their secret
signing keys. When a member is revoked, his revocation token is added to a list
called Revocation list (RL) and passed to the verifiers. Thus, the verifiers can
check the validity of the signer using the latest RL. Since VLR does not require
to generate keys newly or keep track of information for the existing members,
it is more convenient than any other approach. It simply asks to update the
verifiers who are less than the members in number when a member is revoked.
Thus, it is suitable for any size of groups.

In general, group signature schemes consist of four algorithms, KeyGen, Sign,
Verify, and Open. VLR group signature schemes consist of former three algo-
rithms, and VLR scheme has an implicit tracing algorithm for tracing signers
instead of Open.

– KeyGen(n,N ): This randomized PPT algorithm takes as inputs n and N.
Then it outputs a group public key gpk, a vector of user secret keys gsk =
(gsk[0],gsk[1], ..., gsk[N− 1]), and a vector of user revocation tokens grt =
(grt[0],grt[1], . . . ,grt[N− 1]), where gsk[i] is the i-th user’s secret key and
grt[i] is his revocation token.

– Sign(gpk, gsk[d ], M ): This randomized algorithm takes as inputs the group
public key gpk, a secret signing key gsk[d ], and a message M ∈ {0, 1}∗. Sign
generates a group signature Σ on M.

– Verify(gpk, RL, Σ, M ): This deterministic algorithm verifies whether the
given signature Σ is a valid signature on given message M using the given
group public key gpk. Moreover, Verify validates the signer is not being
revoked using RL.

Implicit Tracing Algorithm: Any VLR group signature scheme has an implicit
tracing algorithm. The implicit tracing algorithm uses grt as the tracing key.
For a given valid message-signature pair (M, Σ), an authorized person can run
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Verify(gpk, RL=grt[i ], Σ, M ) for i = 0, 1, · · ·,N−1 until Verify returns invalid.
The index of the signer is the first index i∗ ∈ {0, 1, · · ·,N − 1} that Verify
returns invalid. The implicit tracing algorithm fails if Verify verifies properly for
all users on the given signature. Since the implicit tracing algorithm requires to
run Verify linear times in N, it is inappropriate for large groups. In comparison
to the algorithm Open, its time consumption is high.

Though VLR is the comparably convenient approach for any group sig-
natures, the existing lattice-based group signature schemes with VLR such
as [19] relies on a weaker security notion called selfless-anonymity. Not like
the full-anonymity, the selfless-anonymity has some limitations. According to
the BMW03 model, in the full-anonymity game between a challenger and an
adversary, all the secret keys of the group members including challenging keys
are given to the adversary at the beginning of the game. But, in the selfless-
anonymity game, the adversary is not given any secret keys. He can query secret
keys at the query phase but not related to the challenging indices. However, the
adversary is allowed for the queries; Signing, Corruption, and Revocation.

3.3 Achieving stronger security for VLR schemes with member
registration

Our scheme is for managing both member registration and revocation. Thus,
the almost-full anonymity suggested in [28] is not sufficient for our scheme. We
modify the almost-full anonymity by adding the registration query. Moreover,
we add some restrictions to manage the attacks of the adversary. We concern
how to secure our scheme (i) when the adversary joins the group as a legal user
before the game starts and (ii) when he requests to join the group after the game
begins. When any user joins the group, we provide revocation tokens to them.
So the adversary can get the revocation tokens by adding new users. In concern
(i), the adversary is getting the revocation tokens when joining the group before
the game starts (he is a legal user) and he can use those indices in challenge
phase after the game starts. Since the adversary has not queried those revocation
tokens, this is not tracked by the almost-full anonymity. As a solution for the
above concerns, we suggest a new security notion called dynamical-almost-full
anonymity, which is an extended version of the almost-full anonymity for fully
dynamic group signatures with VLR and member registration.

In the dynamical-almost-full anonymity, we allow the adversary to add new
members to the group at the anonymity game as same as in previous group sig-
nature schemes like [5,23] and we maintain a global list called RU. RU is used
to track the details of the new members that the adversary adds via the regis-
tration query. RU only consists of indices of the members that the adversary
added. Tracking the new user details is also done in the previous group signature
schemes like in [5,23]. However, we will not provide the revocation tokens of the
new users at the registration query, but the adversary can request revocation
tokens using the revocation query. At the challenge stage, we check RU and
only generate the challenging signature for the indices in RU, but those are not
used for the revocation queries. By creating challenging signature only for the
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indices in RU we give a solution to the concern (i) and not providing the revo-
cation tokens for the members at the registration query we give a solution to the
problem (ii). The dynamical-almost-full anonymity game between a challenger
and an adversary is as follows.

– Initial Phase: The challenger C runs KeyGen to get a group public key gpk,
authority secret keys (ik,ok). Then gives gpk and existing group members’
secret signing keys gsk to the adversary A, and creates a new list RU.

– Query Phase: A can query any token (grt) of any user and can access the
opening oracle, which results with Open(ok, M, Σ). Moreover, A can add
new users to the group using registration query. If the new user is valid and
not already in the registration table reg, then C adds new user to the group.
Then C generates token for the new user and updates both reg and RU.
However, C does not return the token of the new user to A.

– Challenge Phase: A outputs a messageM∗ and two distinct identities i0, i1.
If A already not queried the revocation tokens of i0, i1 and if i0, i1 are in

RU, then C selects a bit b
$← {0,1}, generates Σ∗ = Sign(gpk,gsk[ib],M

∗)
and sends Σ∗ to A. A still can query the opening oracle except the signature
challenged and he is not allowed for revocation queries with challenging
indices. A can add users to the group.

– Guessing Phase: Finally, A outputs a bit b′, the guess of b. If b′ = b, then
A wins.

4 Our scheme

In our scheme, there are two authorities, group manager and, tracing manager.
The group manager interacts with new users who want to become group members
and issues membership-certifications to the valid users. Moreover, he manages
the member revocation. The tracing manager discovers the signers. Each man-
ager has their public and privates keys. We assume the group manager and new
users interact through a secure channel. The users generate their secret signing
keys, and they can sign messages once the group manager accepted them as
group members. The group manager creates group members’ tokens. To track
the details of the members, we maintain a registration table reg.

Every new user has to interact with the group manager by presenting a
valid signature. The new user i, who has a personal public and private key pair
(upk[i], usk[i]) (as in [5]), samples a short vector xi ← DZ4m,σ and computes zi
using xi and F, where F is a public parameter. Then the new user generates
a signature Σjoin by signing zi with his personal private key usk[i]. When the
group manager receives the massage-signature pair (zi, Σjoin), first he checks
whether zi is used before. If zi is not used before, then the group manager
verifies Σjoin on zi using the user’s personal public key upk[i]. Then he samples
the new user’s revocation token and updates the registration table reg with the
new user’s details. Finally, the group manager sends revocation token to the user.
Now the new user (group member) can sign messages on behalf of the group.
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4.1 Supporting zero-knowledge protocol

This section provides a general description of zero-knowledge argument system
that we use in our scheme. Many other lattice-based schemes like [19,20,22] also
use ZKAoK to prove the verifier that the signer is valid in zero-knowledge.

Let COM be the statistically hiding and computationally binding commit-
ment scheme described in [17]. We use matrices F, A, B, V, G, H and vec-
tors u, v, c1, c2 as public parameters. The prover’s witness consists of vectors
x, bin(z), r, s, e1, and e2. The prover’s goal is to convince the verifier that
F · x = H4n×2m · bin(z) (as discussed in [20]), V · (A · r) + e1 = v mod q
(as discussed in [19]), and (c1 = BT s + e1, c2 = GT s + e2 + ⌊q/2⌋bin(zi)) (as
discussed in [22]). Here Hn×n⌈log q⌉ ∈ Zn×n⌈log q⌉ is a “power-of-2” matrix and
z = Hn×n⌈log q⌉ · bin(z) for any z ∈ Zn

q .

4.2 Description of Our Scheme

This section describes the algorithms of our scheme. Our scheme consists of six
algorithms namely, KeyGen, Join, Sign, Verify, Open, and Revoke. The former five
algorithms follow the techniques given in [20]. We adapt algorithms presented
in [20] to compatible with member revocation mechanism. We use algorithm
Revoke to manage member revocation.

Setup: The randomized algorithm KeyGen(1n, 1N ) works as follows.

1. Run PPT algorithm GenTrap(n, m, q) to get A ∈ Zn×m
q and a trapdoor TA.

2. Sample vector u
$← Zn

q .
3. Generate encryption and decryption keys by running GenTrap(n, m, q) to

get B ∈ Zn×m
q and a trapdoor TB.

4. Sample matrix F
$← Z4n×4m

q .
5. Finally output, the group public key gpk:= (A, B, F, u), the group man-

ager’s (issuer’s) secret key ik:= TA and the opener’s secret key ok:= TB.

Join: A new user i, who has a personal public key and private key pair
(upk[i],usk[i]) can interact with the group manager (issuer) to join the group
as follow.

1. User i samples a discrete Gaussian vector xi ← DZ4m,σ, and computes zi ←
F ·xi ∈ Z4n

q . Then he generates a signature Σjoin ← Sig(usk[i], zi) and sends
both zi, and Σjoin to the group manager.

2. The group manager GM verifies that zi was not used by any user previ-
ously, by checking the registration table reg. Then he verifies Σjoin is a valid
signature on zi, using Vf(upk[i], zi, Σjoin). He aborts if any condition fails.
Otherwise he will sign the user’s index d = bin(zi), the binary representation
of zi, using group manager’s private key and generates the certificate for the
index cert-indexi = Sign(ik, bin(zi)).
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The group manager selects Ri
$← Zn×4n

q and computes wi = Ri · zi. Then
he samples a vector ri ∈ Zm ← SampleD(TA,A,u − wi, σ), and generates
the certificate for the token cert-tokeni = Sign(ik, (A · ri)) (ik = TA).
Then he saves the details of the new member (user) i in the registration table
reg[i]← (i, d,upk[i], zi, Σjoin,Ri,wi, ri, 1) and makes the record active (1).
Finally, GM sends the certi = (cert-indexi, cert-tokeni,Ri, (A · ri)) as the
new member’s member-certificate.

Sign: Sign(gpk,gsk[i], certi,M) is a randomized algorithm, that generates a
signature Σ on a given message M using gsk[i] = xi as follows.

1. Let H1: {0, 1}∗ → Zn×ℓ
q , H2: {0, 1}∗ → {1, 2, 3}t and G: {0, 1}∗ → Zn×m

q be
hash functions, modeled as a random oracle.

2. Parse gpk as (A, B, F, u) and certi as (cert-indexi, cert-tokeni,Ri, (A ·ri)).
3. Run OGen(1n)→ (ovk,osk).
4. Encrypt the index d = bin(zi), where zi = F · xi.

(a) Let G = H1(ovk) ∈ Zn×2m
q .

(b) Sample s ← χn, e1 ← χm and e2 ← χℓ.
(c) Compute the ciphertext (c1, c2) pair

(c1 = BT s+ e1, c2 = GT s+ e2 + ⌊q/2⌋bin(zi)).
5. Sample ρ

$← {0, 1}n, let V = G(A,u,M, ρ) ∈ Zn×m
q .

6. Compute v = V · (A · ri) + e1 mod q (||e1||∞ ≤ β with overwhelming
probability).

7. Execute Verify(A, bin(zi), cert-indexi) to prove cert-indexi is generated on
bin(zi) and Verify(A, (A · ri), cert-tokeni) to prove cert-tokeni is gener-
ated on (A · ri). Then generate a proof as in Section 4.1, that the user
is valid, honestly computed above v, and index is correctly encrypted.
By repeating the basic protocol of KTX commitment scheme in Section
4.1 t = ω(log n) times to make the soundness error negligible. Then
we make it non-interactive using the Fiat-Shamir heuristic as a triple,
Π = ({CMT (k)}tk=1, CH, {RSP (k)}tk=1), where CH = ({Ch(k)}tk=1) =
H2(M, {CMT (k)}tk=1, c1, c2).

8. Compute OT S; sig = OSig(osk, (c1, c2,Π)).
9. Output signature Σ = (ovk, (c1, c2), ρ,Π, sig,v).

Verify: The deterministic algorithm Verify(gpk,M, Σ,RL) works as follows,
where RL = {{ui}i}.

1. Parse the signature Σ as (ovk, (c1, c2), ρ,Π, sig,v).
2. Get V = G(A,u,M, ρ) ∈ Zn×m

q .
3. If OVer(ovk, ((c1, c2),Π), sig) = 0 then return 0.
4. Parse Π as ({CMT (k)}tk=1, {Ch(k)}tk=1, {RSP (k)}tk=1).
5. If (Ch(1), . . . , Ch(t)) ̸= H2(M, {CMT (k)}tk=1, c1, c2) return 0 else proceed.
6. For k = 1 to t run the verification steps of the commitment scheme to

validate RSP (k) with respect to CMT (k) and Ch(k). If any of the conditions
fails then output invalid.
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7. For each ui ∈ RL compute e
′

i = v −V · ui mod q to check whether there
exists an index i such that ||e′

i||∞ ≤ β. If so return invalid.
8. Return valid.

Open: Open(gpk, ok, reg, M, Σ) functions as follows, where ok = TB.

1. Let G = H1(ovk).
2. Then using TB compute a small norm matrix Y ∈ Zm×2m, where B ·Y = G

mod q.
3. Compute bin(zi) = ⌊(c2 − YT · c1)/(q/2)⌉, determine the signer using reg

corresponds to bin(zi), and output the index.

Revoke: The algorithm Revoke(gpk, ik, i, reg, RL) functions as follows.

1. Query reg for i and obtain revoking member’s revocation token (A · ri).
2. Add (A · ri) to RL and update reg [i ] to inactive (0).
3. Return RL.

5 Correctness and Security Analysis of the Scheme

To define correctness and the security requirements we use a set of experiments
consisted of a set of oracles which can be executed by the adversary. We maintain
a set of global lists, which are used by the oracles and performed by the challenger
C. When the adversary A adds a new user to the group (registration query),
and if the new user is excepted as a new member, his index is added to a list
called RU. When A corrupts any user, then that user’s index is added to CUL.
SL contains the signatures that obtained from Sign oracle. When A requests
a signature, the generated signature is added to SL with the index and the
message. When A accesses Challenge oracle, the generated signature is added
to CL with the message sent. When A reveals any user-revocation token, the
challenger adds that user index to TU. When A reveals any user-secret signing
key then that user index is added to BU. We use a set S to maintain a set of
revoked users.

The oracles that we use in the experiments are as follows.

– AddU(i): The adversary A can add a user i ∈ N to the group as an honest
user. The oracle adds i to RU. But the new user’s revocation token is not
returned to the adversary.

– CrptU(i, upk): A can corrupt user i by setting its personal public key upk[i ]
to upk. The oracle adds i to CUL, and initializes the issuer’s state in group-
joining protocol.

– SendToGM(i, Min): A corrupts user i, and engages in group-joining protocol
with Issue-executing issuer. The adversary provides i and Min to the oracle.
The oracle which maintains the Issue state, returns the outgoing message,
and adds a record to reg.
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– SendToUser(i, Min): A corrupts the issuer and engages in group-joining pro-
tocol with Join-executing user. The adversary passes i and Min to the oracle.
The oracle which maintains the user i state, returns the outgoing message,
and sets the private signing key of i to the final state of Join.

– RevealSk(i): A can retrieve the secret signing key of the user i. The oracle
updates BU and returns gsk[i ].

– RevealRt(i): A can retrieve the revocation token of user i, and the oracle
returns revocation token and adds i to TU.

– ReadReg(i): A reads the information of i in reg.
– ModifyReg(i, val): A modifies reg [i ] by setting val.
– Sign(i, M ): A obtains a signature Σ for a given message M and user i who

is an honest user and has private signing key.
– Chalb(i0, i1,M): This oracle is for defining anonymity and provides a group

signature for the given message M under the private signing key of ib, as
long as both i0, i1 are active and honest users having private signing keys
(in RU). Moreover, those indices should not being used to reveal revocation
tokens (not in BU).

– Revoke(i): A can request to revoke user i. The oracle updates the record to
0 for i in reg and adds revocation token of i to the set S.

– Open(M, Σ): A can access the opening oracle with a message M and a
signature Σ to obtain the identity of the user, who generated the signature
Σ. If Σ is generated at Chalb, then oracle will abort.

In addition, we use the following simple polynomial-time algorithm for ease.

– IsActive(i,reg): This algorithm determines whether the member i is active by
querying the registration table reg and outputs either 0 or 1.

5.1 Correctness

Expcorr
FDGS,A(λ)

(gpk,ok, ik)← GKg(1λ); RU← ∅;
(i,M)← A(gpk;AddU,ReadReg,Revoke,RevealRt);
If i /∈ RU or gsk[i] = ε or certi = ε or IsActive(i, reg)= 0 then return 0.
Σ ← Sign(gpk,gsk[i], certi,M);
If Verify(gpk, M, Σ, S) = 0 then return 1.
(i′)← Open(gpk,ok, reg,M, Σ);
If i ̸= i′ then return 1.
Return 0.

First note Verify accepts signatures, which are only generated by active and
honest users. If signer’s revocation token is in RL, then his signature is not ac-
cepted. Steps 6 and 7 in both Sign and Verify guarantee this condition. Complete-
ness of the underlying argument system guarantees that the valid signatures are
always accepted and soundness of the underlying argument system guarantees
that a revoked signer cannot pass the test. Open outputs the index of the signer
with overwhelming probability. It computes bin(zi) and extracts the details of
the signer from reg.
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5.2 Anonymity

Theorem 1: In the random oracle model, our scheme is dynamical-almost-full
anonymous if LWEn,q,χ problem is hard to solve.

Expanon-b
FDGS,A(λ)

(gpk,ok, ik)← GKg(1λ); RU,CUL,SL,CL,BU,TU← ∅;
b∗ ← A(gpk,gsk;
AddU,CrptU,SendToUser,RevealSk,RevealRt,Open,ModifyReg,Revoke,Chalb);

Return b∗;
We prove that our scheme is dynamical-almost-full anonymous via a sequence

of games.
Game 0: This is the above-defined experiment. The challenger C runs Key-

Gen(1n, 1N ) to obtain group public keys and authority keys. Next, C gives the
group public key gpk and all the existing group members’ secret keys gsk to
the adversary A. In the query phase, A can request for revocation tokens of any
member, and A can access opening for any signature. Moreover, A can add new
members to the group. C validates the new members and adds records to the
registration table reg and RU. But C will not provide the revocation tokens
of the new members without a request of A. Thus, the member certification
will not be provided at the registration query and the challenger returns a suc-
cess message only. When A corrupts the users, those users’ indices are added
to CUL and when he revokes users, those users’ indices are added to S with
tokens of them. Moreover, when A reveals any user token, C adds those users’
indices to TU and returns the member certificate cert. In the challenge phase,
A sends two indices (i0, i1) with a message M∗. If (i0, i1) are newly added as
per RU and are not used for querying revocation tokens (not in TU), then
C generates and sends back a signature Σ∗ = (ovk∗, (c∗1, c

∗
2), ρ

∗,Π∗, sig∗,v∗)
← Sign(gpk,gsk[ib]

∗, certib ,M
∗) for a random b ← {0, 1}. A returns b′ ∈ {0, 1}

the guess of b. If b′ = b then returns 1 or 0 otherwise.
The following games are same as Game 0 with slight modifications. Thus,

still A can access the oracles, and C maintains the global lists according to A’s
requests through the oracles. In any game, A’s requests are almost the same up
to some slight changes in inputs. Thus, C manages those queries as following
games explained and updates the global lists according to A’s requests.

Game 1: In this game, the challenger C makes a slight modification com-
paring to Game 0. C generates the one-time key pair (ovk∗,osk∗) at the be-
ginning of the game. If A accesses the opening oracle with a valid signature Σ =
(ovk, (c1, c2), ρ,Π, sig,v), where ovk=ovk∗, C returns a random bit and aborts.
However, ovk=ovk∗ contradicts the strong unforgeability of OT S. Moreover,
since the ovk∗ is independent of the adversary’s view, probability of ovk=ovk∗

is negligible. Besides, if A comes up with a valid signature Σ, where ovk=ovk∗,
then sig is a forged signature. We assume that A does not request for opening
of a valid signature with ovk∗.

Game 2: In this game, C programs the random oracle H1. At the beginning
of the game, C replaces the encrypting matrices B and G. C chooses uniformly
random B∗ ∈ Zn×m

q and G∗ ∈ Zn×ℓ
q . Then sets H1(ovk

∗)=G∗. To answer
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the opening oracle requests with Σ = (ovk, (c1, c2), ρ,Π, sig,v), C samples
Y ← (Dzm,σ)

ℓ, and computes G = B∗Y ∈ Zn×ℓ
q . This G is used to answer

the opening and keep track of (ovk, Y, G) to be reused if A repeats the same
requests for H1(ovk). The distributions of G is statistically close to the uniform
over Zn×ℓ

q [15]. Thus, this game is indistinguishable from Game 1.
Game 3: In this game, instead of honestly generating the legitimate non-

interactive proof Π, the challenger C simulates the proof without using the wit-
ness. This is done by invoking the simulator for each k ∈ [t] and then program the
random oracle H1 accordingly. The challenged signature Σ∗ is statistically close
to the signature in the previous games since the argument system is statistically
zero-knowledge. Thus, Game 3 is indistinguishable from Game 2.

Game 4: In this game, the challenger C replaces the original revocation

token. We have v = V · grt[ib] + e1 mod q. C samples t
$← Zn

q uniformly and
computes v = V·t+e1 mod q.V is uniformly random over Zm×n

q , e1 is sampled
from the error distribution χ, and C replaces only grt[ib] with t. The rest of the
game is same as Game 3. Thus, the two games are statistically indistinguishable.

Game 5: In this game, the challenger C obtains v uniformly. Thus, C makes

details of revocation token totally independent of the bit b. C samples y
$← Zm

q

and sets v = y. In the previous game, the pair (V, v) is a proper LWEn,q,χ

instance and in this game C replaces v with truly uniformly sampled y
$← Zm

q .
Under the assumption of LWEn,q,χ problem is hard, Game 4 and Game 5 are
indistinguishable.

Game 6: In this game the challenger C modifies the generation of ciphertext
(c∗1, c

∗
2) uniformly. Let c∗1 = x1 and c∗2 = x2 + ⌊q/2⌋db, where x1 ∈ Zm and

x2 ∈ Zℓ are uniformly random and db is the index of the challenger’s bit. The
rest of the game is same as Game 5. Game 5 and Game 6 are indistinguishable
under the assumption of the hardness of LWEn,q,χ.

Game 7: Finally, we make Σ∗ totally independent of the bit b. The challenger
C samples x′

1 ∈ Zm
q and x′

2 ∈ Zℓ
q uniformly random and assigns c∗1 = x′

1 and
c∗2 = x′

2. Thus, Game 6 and Game 7 are statistically indistinguishable. Since
Game 7 is totally independent from the challenger’s bit b, the advantage of the
adversary in this game is 0.

Hence, these games prove that proposed scheme is secure with the dynamical-
almost-full anonymity.

5.3 Traceability

Theorem 2: In the random oracle model, our scheme is traceable if SIS problem
is hard.

Exptrace
FDGS,A(λ)

(gpk,ok)← GKg(1λ); RU,CUL,SL,BU,TU← ∅;
(M, Σ)← A(gpk,ok;
AddU,CrptU,SendToIssuer,RevealSk,RevealRt,Sign,Revoke);

If Verify(gpk, M, Σ, S) = 0 then return 0.
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i← Open(gpk,ok, reg,M, Σ);
If i = 0 or IsActive(i, reg)= 0 then return 1 else return 0.

Suppose there is an algorithm B that solves SIS problem with non-negligible
probability. The adversary A who has gpk and ok outputs (M, Σ) in the trace-
ability game. He can add new users and replace members’ personal public keys.
Moreover, he can query for secret signing keys and revocation tokens of any
member. For the queries of A, B answers as in [22] and [20] by using oracles.

Finally, A outputs forgery signature Σ∗=(ovk∗, (c∗1, c
∗
2), ρ

∗,Π∗, sig∗,v∗) on
message M∗. B opens Σ∗ and obtains the index. As same as in [22] and [20],
the improved Forking Lemma [10] guarantees that, with probability at least 1/2,
B can obtain 3-fork involving tuple (M, {CMT (k)}tk=1, c1, c2) running A up to
32 · QH/(ε − 3−t) times with the same tape. Rest of the proof flows as in [22]
and [20] and finally we can say, if A has non-negligible success probability and
runs in polynomial time, then so does B. This concludes our proof of traceability.

5.4 Non-frameability

Theorem 3: In the random oracle model, our scheme is non-frameable if SIS
problem is hard.

We use the proof discussed in [20] to prove our scheme’s non-frameability.

Expnon-fram
FDGS,A(λ)

(gpk,ok, ik)← GKg(1λ); RU,CUL,SL,BUTU← ∅;
(M, Σ, i)← A(gpk, ik,ok;

CrptU,SendToUser,RevealSk,RevealRt,Sign,ModifyReg);
If Verify(gpk, M, Σ, S) = 0 then return 0.
If i /∈ RU or i ∈ BU or (i,M, Σ) ∈ SL then return 0 else 1.

Suppose there is a frameable adversary A with advantage ϵ. We construct a
PPT algorithm B that solves SIS problem. B is given a matrix F. B generates
all the public keys and authority keys. Then B interacts with A by sending gpk
and authority keys (TA,TB).

As discussed in [20], B responses to A’s queries. A can act as a corrupted
group manager and add a new user i to the group. When A requests user i to
generate a signature on a message M, B generates and returns the signature
Σ=(ovk, (c1, c2), ρ,Π, sig,v).

Finally, on a message M∗, A outputs Σ∗=(ovk∗, (c∗1, c
∗
2),Π

∗, sig∗,v∗), which
opens to i∗ who did not sign the message. Thus, (M∗, Σ∗) should frame user i∗.
B has a short vector zi∗ = F · xi∗ mod q. To solve SIS instance B should have
another short vector zi′ = F ·xi′ mod q. To compute such a vector, B proceeds
by replaying A sufficient times and applying Improved Forking Lemma [10].

As discussed in [20], B can extract a short vector x′, where zi∗ = F·x′ mod q.
According to Stern-like proof of knowledge, with overwhelming probability, we
say x′ ̸= xi∗ . A nonzero vector h = xi∗ − x′ is a solution for SIS problem.

This proves the non-frameability of our scheme.
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6 Conclusion

This paper presented a simple lattice-based group signature scheme which sat-
isfies both member registration and revocation with VLR. We have discussed
VLR group signatures and difficulties of achieving full-anonymity for VLR group
signatures. Moreover, we proved our scheme’s security by suggesting a new se-
curity notion called dynamical-almost-full anonymity. However, achieving full-
anonymity for VLR group signature schemes still remains as a problem.
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