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Abstract. Even though Verifier-local revocation mechanism seems to
be the most flexible revocation method that suits for any size of groups
it could not reach strong security yet. Verifier-local revocation technique
needs to update only the verifiers with revocation messages when a mem-
ber is revoked while most of the revocation mechanisms require to re-
initialize the group or track changes of the group. The first lattice-based
group signature scheme with verifier-local revocability was suggested by
Langlois, Ling, Nguyen, and Wang (PKC 2014). However, their scheme
relies on a weaker security notion. On the other hand, Bellare, Mic-
ciancio, and Warinschi (EUROCRYPT 2003) proposed formal security
definitions called full-anonymity and full-traceability for static groups.
Achieving full-anonymity for schemes with verifier-local revocation is
technically challenging because those schemes use a token system. This
paper provides a scheme with verifier-local revocation that achieves the
full-anonymity and full-traceability.

Keywords: lattice-based group signatures, verifier-local revocation,
full-anonymity, full-traceability

1 Introduction

In the setting of group signatures introduced by Chaum and van Heyst
[9], group members can generate signatures for the group anonymously
(anonymity). On the other hand, the group manager can extract the iden-
tity of the group member who created the signature (traceability). Thus,
the original group signature scheme has two core requirements, anonymity
and traceability. Later more requirements such as unlinkability, unforge-
ability, and framing resistance have been proposed. However, the pre-
cise meaning of those requirements not always clear and sometimes their
meaning overlap each other. Bellare et al. [2] (BMW03 model) proposed
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strong and formal definitions for the core requirements of the group signa-
tures with two security notions called, full-anonymity and full-traceability.
The full-anonymity and the full-traceability, which imply all the existing
security notions provide a conceptual simplification since it requires to
check only two security properties in a group signature scheme. However,
the BMW03 model is for static groups, not for dynamic groups. In real-life
almost all the group settings are stateless. Thus, member registration and
member revocation requirements are essential when applying the group
signature schemes in practice.

When a member is misbehaved, he should be punished. For instance,
if a member issued a signature for an unnecessary document, he should be
removed from the group. Member revocation in group signature schemes
requires restricting members signing in future after revoking them. There
are several member revocation methods. For instance, one revocation
method is generating and distributing new keys for each member and
verifiers or requesting each member to update their keys and generating
the group public key newly. Since this requires to update all the unre-
voked members and the verifiers, it is inconvenient to implement prac-
tically. Bresson et al. [5] suggested another revocation technique by ex-
tending the signing procedure of the scheme given in [8]. Their revocation
method requires signers to proof at the zero-knowledge that his identity
is not in the public list of revoked identities. However, this method causes
the linear growth of the size of the group signatures with the number of
revoked members. Thus it is a burden for the signers. Brickell [6] pro-
posed a revocation method called Verifier-local revocation (VLR), which
was subsequently formalized by Boneh et al. [4] in their scheme. VLR
requires to pass revocation messages only to the verifiers when a member
is revoked. In real-life scenarios, since the number of verifiers is much less
than the number of members, passing messages only to the verifiers are
efficient than any other revocation technique. Most of the group signature
schemes (e.g., [16], [3]) operate in the bilinear map setting which will be
insecure once quantum computers become a reality.

Lattice-based cryptography is the most prominent solution for the
post-quantum cryptography. It provides provable security under worst-
case hardness assumptions. Gorden et al. [11] suggested the first lattice-
based group signature scheme. However, the sizes of both the group pub-
lic key and the signature in their scheme increase with the number of
members (N) (linear-barrier problem). Thus, it cannot apply to large
groups. Then Camenisch et al. [7] presented a lattice-based group signa-
ture scheme with anonymous attribute token system, which still expe-
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riences the linear-barrier problem. Later, Languillaumie et al. [13] pre-
sented a scheme with a solution to the linear-barrier problem. However,
the first three lattice-based group signature schemes follow LWE-based
PKE (public-key encryption) scheme, and they are only for static groups.

Langlois et al. [14] proposed the first lattice-based group signature
scheme which facilitates member revocation and free of LWE-based PKE.
They have used VLR as the member revocation technique, and their
scheme is more efficient while based on weaker security assumptions. In
terms of security, their scheme satisfies a weaker security notion called
selfless-anonymity. The VLR group signature schemes cannot employ the
full-anonymity described in the BMW03 model directly because VLR
group signature schemes use a token system to manage member revoca-
tion. Thus, each member has a token other than their secret signing key.
In the full anonymity game between a challenger and an adversary as
described in the BMW03 model, all the member secret signing keys are
given to the adversary at the beginning. In VLR group signature schemes,
revocation tokens cannot be given to the adversary because he can iden-
tify the signer of a signature using tokens. Other than that, secret signing
keys cannot be given to him because he can derive the revocation token
from the secret signing keys.

The present lattice-based VLR group signature schemes raise a prob-
lem, that is whether it is possible to design a VLR lattice-based group
signature scheme in the BMW03 model that achieves the full-anonymity.

1.1 Our Contribution

The lattice-based VLR group signature scheme in [14] relies on the selfless-
anonymity. Stronger security for VLR schemes can be achieved in two
ways. One approach is by using a restricted-version of full anonymity.
The other process is changing the methods in the scheme. We provide
a new group signature scheme that can achieve the full-anonymity using
the second method.

The previous lattice-based group signatures failed to obtain the full-
anonymity because anyone possessing revocation tokens can execute sig-
nature verification algorithm and confirm whether the relevant member
created the signature or not. For instance, in the anonymity game be-
tween a challenger and an adversary, if the adversary knows the revoca-
tion tokens of the challenging indices, then he can execute Verify with
revocation tokens he has. If Verify returns Invalid, then he knows that the
owner of the revocation token generated the signature. Thus, this leads
to an assumption that the verifiers should not see the revocation tokens,
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especially the challenging indices’ revocation tokens. Based on this as-
sumption, new security notions were proposed ( [18, 19]). However, none
of them are as strong as full-anonymity because they do not provide all
the revocation tokens to the adversary. Thus those security notions are
restricted version of full-anonymity.

This paper suggests a scheme that can provide all the revocation to-
kens to the adversary even the challenged indices’ revocation tokens. In
original VLR schemes, when revoking a member, the group manager adds
the revoking member’s token into a list called revocation list (RL) and
passes RL to the verifiers. Thus, Verify has an additional input RL, and
the verifiers have to check whether the singer’s revocation token is not
in the list other than verifying the signature. We suggest a new revoca-
tion method for VLR schemes that the group manager has to sign each
revocation token before adding to RL. On the other hand, at the signa-
ture verification, the verifier has to check whether the revocation tokens
in RL are signed by the group manager other than validating the signer
and the signature. Thus, even the adversary obtains any revocation token
he cannot execute Verify because the adversary does not know the group
manager’s secret key. Now, we can apply the full-anonymity for our VLR
group signature scheme and provide all the member secret signing keys
and revocation tokens including the challenging indices’ details to the
adversary at the full-anonymity game.

As a result, we deliver a new lattice-based group signature scheme
using VLR with new revocation and verification methods, that satisfies
the full-anonymity.

2 Preliminaries

2.1 Notations

For any integer k ≥ 1, we denote the set of integers {1, . . . , k} by [k]. We
denote matrices by bold upper-case letters such as A, and vectors by bold
lower-case letters, such as x. We assume that all vectors are in column
form. While the concatenation of matrices A ∈ Rn×m and B ∈ Rn×k, is
denoted by [A|B] ∈ Rn×(m+k) the concatenation of vectors x ∈ Rm and

y ∈ Rk is denoted by (x∥y) ∈ Rm+k. If S is a finite set, b
$← S means

that b is chosen uniformly at random from S.
Throughout this paper, we present the security parameter as n and

the maximum number of members in a group as N = 2ℓ ∈ poly(n).
We select prime modulus q=ω(n2 log n), dimension m≥ 2n log q, Gaus-
sian parameter σ=ω(

√
n log q log n). Moreover we select the integer norm
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bound β=⌈σ · logm⌉ s.t. (4β + 1)2 ≤ q, the number of decomposi-
tion p=⌊log β⌋ + 1, the sequence of integers β1, β2, β3, . . . , βp=β1 =
⌈β/2⌉;β2 = ⌈(β − β1)/2⌉; β3 = ⌈(β − β1 − β2)/2⌉; . . . ;βp = 1. We choose
the number of protocol repetitions t=ω(log n). LetH: {0, 1}∗ → {1, 2, 3}t,
and G: {0, 1}∗ → Zn×m

q be hash functions, modeled as random oracles.
We use one-time signature scheme OT S = (OGen, OSign, OVer), where
OGen is the key generation algorithm of OT S key pair (ovk, osk), OSign
is signature generation and OVer is signature verification functions.

2.2 Lattices

Let q be a prime and B = [b1| · · · |bm] ∈ Zr×m
q be linearly independent

vectors in Zr
q. The r-dimensional lattice Λ(B) for B is defined as

Λ(B) = {y ∈ Zr | y ≡ Bx mod q for some x ∈ Zm
q },

which is the set of all linear combinations of columns of B and m is the
rank of B.

We consider a discrete Gaussian distribution for a lattice. The Gaus-
sian function centered in a vector c with parameter s > 0 is defined as
ρs,c(x) = e−π∥(x−c)/s∥2 and the corresponding probability density func-
tion proportional to ρs,c is defined as Ds,c(x) = ρs,c(x)/s

n for all x ∈ Rn.
The discrete Gaussian distribution with respect to a lattice Λ is defined
as DΛ,s,c(x) = Ds,c(x)/Ds,c(Λ) = ρs,c(x)/ρs,c(Λ) for all x ∈ Λ. Since Zm

is also a lattice, we can define a discrete Gaussian distribution for Zm.
By DZm,σ, we denote the discrete Gaussian distribution for Zm around
the origin with the standard deviation σ.

2.3 Lattice-Related Properties

The security of our scheme depends on the hardness of Learning With
Errors (LWE) and two homogeneous and Inhomogeneous Short Integer
Solution Problems (SIS and ISIS).

Definition 1 (LWE [17]). LWE is parametrized by n,m ≥ 1, q ≥ 2,
and χ. For s ∈ Zn

q , the distribution As,χ is obtained by sampling a ∈ Zn
q

uniformly at random and e← χ, and outputting the pair (a,aT · s+ e).

There are two versions of LWE problem, Search-LWE and Decision-LWE.
While Search-LWE requires to find the secret s, Decision-LWE requires
to distinguish LWE samples and samples chosen according to the uniform
distribution. We use the hardness of Decision-LWE problem.
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For a prime power q, b ≥
√
nω(log n), and distribution χ, solving

LWEn,q,χ problem is at least as hard as solving SIV Pγ (Shortest Inde-
pendent Vector Problem), where γ = Õ(nq/b) [21].

Definition 2 (SIS [17, 21]). Given m uniformly random vectors ai ∈
Zn
q , forming the columns of a matrix A ∈ Zn×m

q , find a nonzero vector

x ∈ Λ⊥(A) such that ||x|| ≤ β and Ax = 0 mod q.

Definition 3 (ISIS [14]). Given m uniformly random vectors ai ∈ Zn
q ,

forming the columns of a matrix A ∈ Zn×m
q , find a vector x ∈ Λ⊥

u (A)
such that ||x|| ≤ β.

For any m, β = poly(n), and q ≥ β · ω(
√
n log n), solving SISn,m,q,β

problem or ISISn,m,q,β problem with non-negligible probability is at least
as hard as solving SIV Pγ problem, for some γ = Õ(β

√
n) [10].

2.4 Lattice-Related Algorithms

We use a randomized nearest-plane algorithm, called, SampleD [10, 15]
and preimage sampleable trapdoor functions (PSTFs) GenTrap [1,10,15].

– SampleD(R, A, u, σ) outputs x ∈ Zm sampled from the distribution
DZm,σ for any vector u in the image of A, a trapdoor R and σ =
ω(
√
n log q log n). The output x should satisfy the condition A · x =

u mod q.

– GenTrap(n, m, q) is an efficient randomized algorithm that outputs
a matrix A ∈ Zn×m

q and a trapdoor matrix R for given any integers
n ≥ 1, q ≥ 2, and sufficiently large m = 2n log q. The distribution of
the output A is negl(n)-far from the uniform distribution.

2.5 VLR Group Signature

The VLR group signature scheme consists of three PPT algorithms [4]
since the implicit tracing algorithm is used to trace the misbehaved users.

– KeyGen(n, N ): This randomized PPT algorithm takes as inputs the
security parameter n and the maximum number of group members
N, and outputs a group public key gpk, a vector of user secret keys
gsk = (gsk[0],gsk[1], ...,gsk[N− 1]), and a vector of user revocation
tokens grt = (grt[0],grt[1], ...,grt[N− 1]).
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– Sign(gpk, gsk[d ], M ): This randomized algorithm takes a secret sign-
ing key gsk[d ] and a message M ∈ {0, 1}∗ as inputs and returns a
signature Σ.

– Verify(gpk, RL, Σ, M ): This deterministic algorithm verifies whether
the given Σ is valid on M using gpk. Then it validates that the signer
not being revoked using RL.

Implicit Tracing Algorithm: Any VLR group signature scheme has an
implicit tracing algorithm that uses grt as the tracing key and traces
a signature to at least one group user who generated it. For an input
valid signature Σ on a message M run Verify(gpk, RL, Σ, M ) for each
i = 0, . . . ,N− 1. It outputs the index of the first user for the verification
algorithm returns invalid. The tracing algorithm fails if this algorithm
verifies properly for all users on the given signature.

3 Definitions of the Security Notations

In this section, first, we define some existing security notions related to
our contribution. Then we discuss the difficulties of employing the full-
anonymity given in the BMW03 model directly to the existing VLR group
signature schemes.

– Anonymity requires that no adversary without group manager’s key
recovers the identity of the user from its signature, which is generated
by one of the indices from two indistinguishable indices.

– Traceability requires that no adversary forges a signature that cannot
be traced.

3.1 Full Anonymity and Full Traceability

Bellare et al. [2] delivered a standard security model (BMW03 model) for
group signatures with two strong security properties, full anonymity and
full traceability.

3.2 Selfless-anonymity

Selfless-anonymity is a relaxed anonymity, and it differs from the full-
anonymity by the limitations it has. The selfless-anonymity provides none
of the member secret keys to the adversary, but only the group public
key is given. However, even with these weaknesses, the selfless-anonymity
facilitates any member to determine whether his secret signing key is
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used to generate a particular signature if he forgets whether he signed
the message.

The full-anonymity and the selfless-anonymity games between a chal-
lenger and an adversary are given in Appendix A

3.3 Difficulties of achieving the full-anonymity for VLR
schemes

The full-anonymity is suggested for static groups. Thus, members have
only secret signing keys. Even the secret signing key is used to generate
signatures, by using the secret signing keys nobody can guess the signer.
But the members in VLR schemes have another secret attribute called
revocation token. Revealing revocation tokens to the outsiders makes the
scheme insecure. For instance, if an adversary knows the user i0’s revo-
cation token grt[i0], then the adversary can confirm whether the user
i0 generated the given signature or not by executing Verify by replacing
RL with grt[i0] as depicted in Figure 1. According to the full-anonymity
game in Figure 1 if Σb is generated by user i0, then Verify return Res
as Invalid for i0. Thus it confirms that user i0 generated the signature.
Moreover, since VLR group signatures derive the revocation tokens from
the secret signing keys, the selfless-anonymity also restricts revealing the
secret signing keys.

Fig. 1. Full Anonymity for VLR schemes
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Because of these reasons, to obtain stronger security for VLR group
signature schemes, we need a restricted version of full anonymity or new
scheme with different methods.

4 New lattice-based VLR Scheme

The new scheme requests the group manager to sign revoking member’s
token before adding to the revocation list RL. Thus the group manager
signs the revoking member’s revocation token grt using the group man-
ager secret key gmsk. Accordingly, at the signature verification, the ver-
ifier has to check whether the revocation tokens in RL are signed by the
group manager. For this, the verifier executes Verify with the group man-
ager’s public key. Because of this reason an adversary who knows the
revocation token of any member i cannot replace RL in Verify(gpk, M,
Σ, RL) with the i ’s revocation token grt[i ] and check whether the user
i generated the signature or not. The signature verification algorithm re-
jects verifying the given signature because the adversary is providing a
revocation token which is not signed by the group manager.

In the full-anonymity game depicted in Figure 1 when the adversary
tries to execute Verify with the revocation token of i0 and i1 he gets Invalid
as the response in both cases because he fails to provide tokens with the
group manager’s signature. Thus, the adversary cannot understand the
signer of the given signature. Therefore, the new scheme can employ the
full-anonymity by giving all the members’ secret signing keys and tokens
to the adversary.

4.1 Description of the Scheme

We use the scheme in [14] as the base and construct our new scheme as
follows.

Key Generation: This randomized algorithm KeyGen(n, N ) works
as below.

1. Run PPT algorithm GenTrap(n, m, q) to get A0 ∈ Zn×m
q and a trap-

door TA.

2. Sample u
$← Zn

q and Ab
i

$← Zn×m
q for each b ∈ {0, 1} and i ∈ [ℓ].

3. Set the matrix A = [A0|A0
1|A1

1| . . . |A0
ℓ |A1

ℓ ] ∈ Zn×(2ℓ+1)m
q .

4. Run GenTrap(n,m,q) to obtain B ∈ Zn×m
q and a trapdoor TB.

5. For each group member select a ℓ-bit string as the index d and generate
secret signing keys and revocation tokens as below.
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(a) Let d = d[1] . . . d[ℓ] ∈ {0, 1}ℓ be the binary representation of d.

(b) Sample vectors x
d[1]
1 , . . . ,x

d[ℓ]
ℓ ←↩ DZm,σ.

(c) Compute z =
∑ℓ

i=1A
d[i]
i · xd[i]

i mod q.
(d) Get x0 ∈ Zm ← SampleD(TA,A0,u− z, σ).

(e) Let x
1−d[1]
1 , . . . ,x

1−d[ℓ]
ℓ be zero vectors 0m.

(f) Define x = (x0||x0
1||x1

1|| . . . ||x0
ℓ ||x1

ℓ ) ∈ Z(2ℓ+1)m.
If ||x||∞ ≤ β then proceed else repeat from (b).

(g) Let the user secret signing key be gsk[d ] = x(d) and revocation
token be grt[d ] = A0 · x0 ∈ Zn

q .

Now we have, the group public key gpk = (A,B,u), the group man-
ager’s secret key gmsk =TB, the group manager’s public key gmpk = B,
group members’ secret signing keys gsk = (gsk[0], gsk[1],. . . , gsk[N−1]),
and their revocation tokens grt = (grt[0], grt[1],. . . , grt[N − 1]).

Signing: The randomized algorithm Sign(gpk,gsk,M) generates Σ
on a message M as follows.

1. Generate a one-time-signature OT S key pair (ovk, osk) using OGen.

2. Sample ρ
$← {0, 1}n, let V = G(A,u,M, ρ) ∈ Zm×n

q .
3. Sample e ← χm.
4. Compute v = V · (A0 ·x0)+ e mod q (||e||∞ ≤ β with overwhelming

probability and (A0 · x0) is the revocation token grt of user i).
5. Repeat the zero knowledge interactive protocol of the commitment

described in Section 4.2 t = ω(log n) times with the public param-
eter (A, u, V, v) and prover’s witness (x, e) to make the sound-
ness error negligible and proof that user is certified. Then make
it non-interactive using the Fiat-Shamir heuristic as a triple, Π
= ({CMT (k)}tk=1, CH, {RSP (k)}tk=1), where CH = ({Ch(k)}tk=1) =
H(M,A,u,V,v, {CMT (k)}tk=1) ∈ {1, 2, 3}t.

6. Compute OT S; sig = OSig(osk,Π).
7. Output signature Σ = (ovk,M, ρ,v,Π, sig).

Verification: Verify(gpk, M, Σ, RL = {{ui}i}) verifies the given
signature Σ is valid on the given message M and signer is a valid member
as follows.

1. Parse the signature Σ as (ovk,M, ρ,v,Π, sig).
2. If OVer(ovk,Π, sig) = 0 then return 0.
3. Get V = G(A,u,M, ρ) ∈ Zm×n

q .

4. Parse Π as ({CMT (k)}tk=1, {Ch(k)}tk=1, {RSP (k)}tk=1).
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5. If (Ch(1), . . . , Ch(t)) ̸= H(M,A,u,V,v, {CMT (k)}tk=1) then return 0.

6. For k = 1 to t run the verification steps of the commitment scheme
to validate RSP (k) with respect to CMT (k) and Ch(k). If any of the
conditions fails then output invalid and hold.

7. For each ui ∈ RL,

(a) Parse ui as (grti, Σrti).

(b) Check whether grti is signed by the group manager by execut-
ing Verify(gmpk,grti, Σrti), where gmpk is the group manager’s
public key. If Verify(gmpk,grti, Σrti), returns Invalid then return
Invalid.

(c) Compute e′i = v −V · grti mod q to check whether there exists
an index i such that ||e′i||∞ ≤ β. If so return invalid.

8. Return valid.

Revoke: The algorithm Revoke(gpk, gmsk, grt[i ], RL) takes the group
manager’s secret key gmsk, revoking member’s revocation token grt[i ],
and latest revocation list RL and proceeds as follows.

1. Generate a signature for the revoking token as Σrti = Sign(gmsk,
grt[i ]).

2. Add revoking token and generated signature to RL, RL ← RL ∪
(grti, Σrti).

3. Return RL.

4.2 The Underlying ZKAoK for the Group Signature Scheme

Zero-Knowledge Interactive Protocol is the main building block of the
scheme as it allows a signer to argue that he is a certified group member
who has a valid secret key and who has not been revoked.

Let COM be the statistically hiding and computationally binding com-
mitment scheme described in [12].

Our scheme can be seen as an adaptation of [14]. Thus we can use the
protocol described in [14]. We use matrix A = [A0|A0

1|A1
1| . . . |A0

ℓ |A1
ℓ ]

∈ Zn×(2ℓ+1)m
q , V ∈ Zm×n

q , u ∈ Zn
q , and v ∈ Zm

q as the public parameters.

The witness of the prover is the vector x(d) = (x0||x0
1||x1

1||...||x0
ℓ ||x1

ℓ ) ∈
Σ(2ℓ+1)m for some d ∈ {0, 1}ℓ and vector e ∈ Zm. While keeping prover’s
identity d in secret he has to convince the verifier that,

1. A · x = u mod q and d is hidden in x(d).

2. ||e||∞ ≤ β and V · (A0 · x0) + e = v mod q.
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5 Analysis of the Scheme

This paper provides a new scheme that satisfies the full-anonymity.
However, the restricted versions of full-anonymity called almost-full
anonymity [19] and dynamical-almost-full anonymity [18] are efficient
than the proposed scheme because those schemes do not require the group
manager to sign revoking tokens. Moreover, in the selfless-anonymity, any
user can check whether he created a particular signature or not. But in
the proposed scheme this is not possible since the users do not know the
group manager’s secret key. However, in terms of security, the new scheme
is much stronger than any other security applied for VLR schemes.

5.1 Correctness

For all gpk, gmsk, gmpk, gsk, and grt,
Verify(gpk,M,Sign(gpk,gsk[i],M), RL) = Valid ⇐⇒ grt[i] /∈ RL and
For all (grti, Σrti) in RL, Verify(gmpk,grti, Σrti)= Valid.

Verify in the proposed scheme only accepts signatures generated on
given messages and which are only generated by active members. If the
revocation token of the signer is in RL, then his signature is not accepted
by Verify. Similarly Sign also checks whether the signer can satisfy those
requirements. The underlying interactive protocol confirms that only ac-
tive members can generate signatures and signers have to possess valid
secret signing key.

5.2 Anonymity

Theorem 1. In the random oracle model, the proposed scheme is full
anonymous based on the hardness of Decision− LWEn,q,χ problem.

Proof. We define a sequence of games conducted between a challenger
C and an adversary A, where the advantage of the adversary is negligi-
ble in the last game. Game 0 is the original full-anonymity game which
provides all the members’ secret signing keys and revocation tokens to
the adversary at the beginning. The adversary can request the index of
the signer by giving a signature. We prove that the games are indistin-
guishable, based on OT S, the zero-knowledge property of the underlying
argument system, and the hardness of the Decision−LWEn,q,χ problem.
Game 4 is the last game which is independent of the bit b ∈ {0, 1}.

Game 0: The challenger C runs KeyGen(1n, 1N ) to obtain the group
public key gpk = (A,B,u), the group manager’s secret key gmsk =TB,



Achieving Full Security for Lattice-based Group Signatures with VLR 13

the group manager’s public key gmpk = B, group members’ secret sign-
ing keys gsk = (gsk[0], gsk[1],. . . , gsk[N − 1]), and their revocation
tokens grt = (grt[0], grt[1],. . . , grt[N − 1]). The challenger C gives the
group public key gpk and all the group members’ secret keys gsk and re-
vocation tokens grt to the adversary A. In the query phase, A can request
to reveal index of the signer for any signature. In the challenge phase, A
sends two indices (i0, i1) together with a message M∗ and C generates
and sends back the challenging signature Σ∗ = (ovk,M∗, ρ,v,Π, sig) for
a random bit b← {0, 1}. The adversary’s goal is to identify which index
is used to generate the challenging signature. A returns b′. If b′ = b then
the experiment returns 1 or 0 otherwise.

Game 1: In this game, the challenger C makes a slight modification
with respect to Game 0. In Game the one-time key pair (ovk, osk) is
generated at the signature generation. In this game, C generates the one-
time key pair (ovk∗,osk∗) at the beginning of the game. If A accesses
the opening oracle with a valid signature Σ = (ovk,M, ρ,v,Π, sig), where
ovk=ovk∗, C returns a random bit and aborts. However, A comes up
with a signature Σ, where ovk=ovk∗ contradicts the strong unforgeabil-
ity of OT S, and since ovk∗ is independent of the adversary’s view, the
probability of ovk=ovk∗ is negligible. Even after seeing the challenging
signature if A comes up with a valid signature Σ where ovk=ovk∗, then
sig is a forged one-time signature, which defeats the strong unforgeability
of OT S. Thus, we assume that A does not request for opening of a valid
signature with ovk∗ and aborting the game is negligible.

Game 2: In this game, without honestly generating the legitimate
non-interactive proof Π, the challenger C simulates the proof Π∗ with-
out using the witness. C invokes the simulator for each k ∈ [t] and then
programs the random oracle H accordingly. The challenging signature
Σ∗ = (ovk∗,M∗, ρ,v,Π∗, sig) is statistically close to the challenging sig-
nature in the previous game because the argument system is statistically
zero-knowledge. Thus Game 2 is indistinguishable from Game 1.

Game 3: In this game, the challenger C replaces the original revoca-
tion token by a vector sampled uniformly random. The original game has
v = V ·grt[ib]+e mod q, where V is uniformly random over Zm×n

q and e
is sampled from the error distribution χ. In this game C samples a vector

t
$← Zn

q uniformly and computes v = V · t+ e mod q. The challenger C
replaces only the revocation token grt[ib] with t. The rest of the game is
same as Game 2. Thus, the two games are statistically indistinguishable.

Game 4: Game 3 has v = V·t+e1 mod q. In this game the challenger

C makes v truly uniform by sampling y
$← Zm

q and setting v = y. Thus, C
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makes revocation token totally independent of the bit b. In Game 3, (V, v)
pair is a proper LWEn,q,χ instance. Thus, the distribution of the pair (V,
v) is computationally close to the uniform distribution over Zm×n

q × Zm
q .

Game 3 and Game 4 are indistinguishable, under the assumption of the
hardness of LWEn,q,χ problem. If the adversary can distinguish v from
y, then he can solve Decision-LWE problem.

Hence, these games prove that the new scheme is secure with full
anonymity.

5.3 Traceability

Theorem 2. Based on the hardness of SIS∞
n,(ℓ+1)·m,q,2β problem, the pro-

posed scheme is traceable, in the random oracle model.

We construct a PPT algorithm F that solves SIS problem with non-
negligible probability. The forgery F is given the verification key (A, u)
and then he generates the key pair (B, TB). F passes gpk=(A, u, B)
and gmsk = TB and responds to the A’s queries as follow.

– Signatures queries: If A queries signature of user d on a random
message M, then F returns simulated Σ = Sign(gpk,gsk[d],M).

– Corruption queries: The corruption set CU is initially set to be
empty. If A queries the secret key of any user d, then F adds d to the
set CU and returns gsk[d].

– Queries to the random oracles H,G are handled by consistently re-
turning uniformly random values in {1, 2, 3}t. For each k ≤ qH, we let
rk denote the answer to the k -th query.

Finally, A outputs a message M∗, revocation data RL∗ and a non-
trivial forged signature Σ∗, which satisfies the requirements of the trace-
ability game, where Σ∗ such that Verify(gpk,M∗, Σ∗,RL∗) = Valid and
implicit tracing algorithm fails, or returns a user index j∗ outside of the
coalition CU \ RL∗.

F exploits the forgery as below.

We require that A always queries H on input
(M∗,A,u,V∗,v∗, {CMT (k)}tk=1). As a result, with probability at
least ϵ − 3−t, there exists certain κ∗ ≤ qH such that the κ∗-th oracle
queries involve the tuple (M∗,A,u,V∗,v∗, {CMT (k)}tk=1). For any
fixed κ∗ run A many times and input as in the original run. For each
repeated run, A returns same output r′κ∗ , . . . , r′κ∗−1 for the first κ∗-1
queries as in initial run and from the κ∗-th query onwards return
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fresh random values r′κ∗ , . . . , r′qH
$← {1, 2, 3}t. The forking lemma

[ [20], Lemma 7] implies that, with probability larger than 1/2, F can
obtain a 3-fork involving tuple (M∗,A,u,V∗,v∗, {CMT (k)}tk=1) after
less than 32 · qH/(ϵ − 3−t) executions of A. Let the responses of F
with respect to the 3-fork branches be r

(1)
κ∗ = (Ch

(1)
1 , . . . , Ch

(1)
t ); r

(2)
κ∗ =

(Ch
(2)
1 , . . . , Ch

(2)
t ); r

(3)
κ∗ = (Ch

(3)
1 , . . . , Ch

(3)
t ). A simple calculation shows

that Pr[∃j ∈ {1, . . . , t} : {Ch
(1)
i , Ch

(2)
i , Ch

(3)
i }] = {1, 2, 3}1− (7/9)t. Un-

der the condition of the existence of such index i, one parses the 3 forgeries

corresponding to the fork branches to obtain (RSP
(1)
i , RSP

(2)
i , RSP

(3)
i ).

Then by using the knowledge extractor ζ of the underlying argument
system, we can extract vectors (y, e). These vectors satisfy the followings.

1. y = (y0||y0
1||y1

1|| . . . ||y0
ℓ ||y1

ℓ ) for some d ∈ {0, 1}ℓ, and
A · y = u mod q.

2. ||e∗||∞ ≤ β and V∗ · (A0 · y0) + e∗ = v∗ mod q.

Remaining proof is same as the proof given in [14]. Thus finally, we
can obtain a vector, which is a valid solution to the SIS problem. This
concludes the proof of traceability.

6 Conclusion

This paper provides a new scheme with new methods for member revoca-
tion and signature verifications. As a result, the proposed scheme was able
to achieve the full-anonymity becoming the first lattice-based group sig-
nature scheme with VLR that achieves the full-anonymity in comparison
with known lattice-based group signature schemes. However, the group
manager has to sign every revoking members’ s token. This leads to an
open problem because the security of the scheme depends on the trust of
the group manager. If the group manager’s information is revealed, then
the scheme is not secure.
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A Security Notions

A.1 Full Anonymity

The full-anonymity game between a challenger and an adversary is as
follows. The adversary is strong as he has given all the member secret
keys. At the beginning of the game, all the user secret keys gsk and the
public key gpk are given to the adversary, and he can see the outcome of
the tracing algorithm.

– Initial Phase: The challenger C runs KeyGen to obtain (gpk,
gmsk,gsk). Then gives (gpk,gsk) to the adversary A.

– Query Phase: The adversary A can access the opening oracle, which
results with Open(gmsk, M, Σ) when queried with a message M and
a signature Σ.

– Challenge Phase: The adversary A outputs a message M and two

distinct identities i0, i1. The challenger C selects a bit b
$← {0,1},

generates a signature Σ∗, and sends to the adversary A. The adversary
still can query the opening oracle except the signature challenged.

– Guessing Phase: Finally, A outputs a bit b′, the guess of b. If b′ = b,
then the adversary A wins.

Definition 4. Let A be an adversary against the anonymity of a group
signature scheme GS. The advantage of A in the above full-anonymity
game is

AdvanonGS,A(n,N) = |Pr[Expanon
GS,A(n,N) = 1]− 1/2|.

A group signature scheme is full-anonymous if AdvanonGS,A is negligible.

A.2 Selfless-anonymity

The adversary in the selfless-anonymity game is weaker than the adver-
sary in the full anonymity game since the adversary has not given any
secret key in the selfless-anonymity game. The adversary has to deter-
mine which of the two adaptively chosen keys generated the challenging
signature.

– Initial Phase: The challenger C runs KeyGen to obtain (gpk, gsk,
grt). Then gives gpk to the adversary A.

– Query Phase: The adversary A can make the following queries.
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1. Signing: The adversary A requests a signature for any message
M ∈ {0, 1}∗ with any user index i, and C returns Σ = Sign(gpk,
gsk[i ], M ).

2. Corruption: The adversary A queries for the secret key of any user
i, and the challenger C returns gsk[i ].

3. Revocation: The adversary A queries for the revocation token of
any user i, and the challenger C returns grt[i ].

– Challenge Phase: The adversary A outputs a message M∗ and two
distinct identities i0, i1, such that A did not make the corruption or

revocation queries for i0, i1. The challenger C selects a bit b
$← {0,1},

computes signature Σ∗=Sign(gpk,gsk[ib],M
∗) for ib, and sends the

challenging signature Σ∗ to the adversary A.
– Restricted Queries: Even after the challenge phase the adversary

A can make queries but with following restrictions.
• Signing: The adversary A can query as before.
• Corruption: The adversary A cannot query for i0 or i1.
• Revocation: The adversary A cannot query for i0 or i1.

– Guessing Phase: Finally, the adversary A outputs a bit b′, the guess
of b. If b′ = b, then A wins.

Definition 5. Let A be an adversary against the anonymity of a VLR
group signature scheme DGS. The advantage of A in the above selfless-
anonymity game is

AdvanonDGS,A(n,N) = |Pr[Expanon
DGS,A(n,N) = 1]− 1/2|.

A VLR group signature scheme is selfless-anonymous if AdvanonDGS,A is
negligible.


