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Abstract. In this paper, we propose a visitors managing system using
group signature schemes. The paper focuses on situations that guests
who are residing in a hotel are like to keep their activities such as access-
ing hotel amenities anonymously. Moreover, guests are generally staying
in a hotel for a short period. Thus, they should be managed with a proper
revocation mechanism. This paper proposes a system using a group sig-
nature scheme with Verifier-local revocation and time-bound keys.
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1 Introduction

The group signature schemes, first submitted by Chaum et al. [6] in 1991, allow
any member of the group to represent the group without revealing his iden-
tity. In this manner, group members are privileged to sign messages for the
sake of the group anonymously. Accordingly, signature verifiers can only vali-
date the signatures, but cannot identify the signers. Besides, if necessary, an
authority can open the signatures, and recognize the signers. These two fea-
tures, anonymity and traceability open doors for practical employment of the
group signature schemes. For instance, applications like key-card access systems,
digital-right management systems, and e-commerce systems interest using group
signature schemes. Most of the first group signature schemes used bilinear map
settings. Security of those schemes will be broken once the quantum computers
become a reality. Nearly a decade before, in 2010, Gorden et al. [10] put for-
ward the first quantum resist group signature scheme using lattice assumptions.
Lattice cryptography is one of the finest auspicious primitive against quantum
computers. Lattice cryptography owns provable strong security in reliance on
the worst-case hardness of the lattice problems. Moreover lattice cryptography
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claims efficient implementation. Thus, Gorden’s scheme [10] showed strong se-
curity against quantum computers. However, the scheme in [10] has a noticeable
disadvantage. The size of the group signature in the scheme in [10] increases with
the number of group members N (linear-barrier problem). More specifically, sig-
natures in Gorden’s scheme have size O(N). Later, in 2012, Camenisch et al. [5]
offered a more secure and efficient scheme with an anonymous attribute token
system. However, this scheme still failed to resolve the linear-barrier problem.
Finally, in 2013, Languillaumie et al. [12] suggested a scheme that overcomes the
linear-barrier problem. Thus the sizes of the signatures and the group public
key in their proposal, given in [12], are proportional to logN . However, none of
those above-mentioned group signature schemes from lattices were able to sup-
port member registration or revocation. All the three schemes are suitable for
static groups, where both the number of group members and their keys are fixed
at the time of setup. As a result, no new member can join later, or no existing
member can be removed.

Later, in 2014, Langlois et al. [13] suggested the first group signature scheme
from lattices that supports member revocation using a revocation method called
Verifier-local Revocation (VLR). Thus Langlois’s VLR group signature scheme
[13] is the first revocation scheme that is accepted to be quantum-resistant at
that time. Even though the scheme presented in [13] has several remarkable
advantages over the previous works, the security of the scheme is weaker since
the scheme depends on a relaxed security notion titled selfless-anonymity. The
scheme given in [21] offered a security notion known as almost-full anonymity
for VLR group signature schemes. Even though the almost-full anonymity is
stronger than the selfless-anonymity, it shows weaker security than the full-
anonymity, suggested by Bellare et al. [3] for static groups. However, the almost-
full anonymity can be seen as a reasonable solution for the security of VLR
group signature schemes because realizing full-anonymity for VLR group sig-
nature schemes is a technically difficult chore. Later, in 2016, Libert et al. [14]
formed a group signature scheme from lattice assumptions to facilitate member
registration. Their scheme [14] allows new users to register to the group via a
group joining protocol. However, even they have considered member registration,
they have not focused on facilitating member revocation. Ling et al. [15] offered
the first fully dynamic group signature scheme from lattices by using accumu-
lators. Using accumulators seems to be less efficient than using VLR in large
groups. Recently, a fully dynamic group signature scheme based on lattices was
proposed in [20]. The scheme in [20] serves both user registration and member
revocation. The scheme in [20] allows members to join via a joining protocol,
and member revocation is managed by using VLR. Moreover, they suggested a
new security notion, namely dynamical-almost-full anonymity. The dynamical-
almost-full anonymity is for fully dynamic (with user registration and member
revocation) group signature schemes with VLR and it is an extended version of
the almost-full anonymity [21].
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Our Contribution

This paper proposes a group signature scheme for managing guest information in
a hotel. For handling of guests’ check-out, this paper employs Verifier-local Re-
vocation (VLR) technique. The revocation method, VLR utilizes a token system
to identify revoked members from active members in a group. Each member in
a group has a token, and when a particular member is retiring or removing from
the group, the group manager adds the token of that member to a list known
as Revocation List (RL). Then he sends the latest RL to the signature verifiers.
At the time of verifying, the verifiers scan and check whether signing member’s
token is not in the list RL. When we implement group signature schemes with
VLR to a dynamic system like guest managing system where guests are joining
the group temporarily, the length of the revocation list grows in a short time.
As a result, the verifiers have to spend a long time to check RL to validate the
signer. As a solution to this problem, we can use time-bound keys, which are
proposed in [8] by Chu et al. Thus, this paper applies the time-bound keys to
the scheme given in [20] and presents a secured and efficient scheme to manage
guest information in a hotel.

2 Preliminaries

2.1 Notations

Throughout this paper we express the set of integers {1, . . . , i} by [i] for any
integer i ≥ 1. Matrices are represented in bold uppercase letters such as X, and
vectors are in bold lowercase letters, such as v. We consider only column vectors
in this paper. While the concatenation of matrices X ∈ Rn×m and Y ∈ Rn×p

is presented as [X|Y] ∈ Rn×(m+p), the concatenation of vectors v ∈ Rm and
z ∈ Rk is indicated as (v∥z) ∈ Rm+k. If S is a finite set, we mean b is chosen

uniformly at random from S by b
$← S and if S is a probability distribution we

mean b is drawn according to S by b
$← S. By ∥z∥ we denote the Euclidean norm

of z. By ∥z∥∞ we denote the infinity norm of z. χ is a b-bounded distribution
over Z. In other words, samples output by χ are with norm at most b with
overwhelming probability. Here b =

√
nω(log n).

2.2 Lattices

Let V = [v1| · · · |vm] ∈ Zr×m
q be linearly independent vectors in Zr

q and q be a
prime. We define the r-dimensional lattice Λ(V) for V as

Λ(V) = {z ∈ Zr | z ≡ Vx mod q for some x ∈ Zm
q }.

Λ(V) is the set of all linear combinations of columns of V and m indicates the
rank of V.

This paper considers a discrete Gaussian distribution in respect of a lattice.
We define the Gaussian function centered in a vector x with parameter s > 0
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as ρs,x(z) = e−π∥(z−x)/s∥2

and the corresponding probability density function
proportional to ρs,x as Ds,x(z) = ρs,x(z)/s

n for all z ∈ Rn. For a lattice Λ
we specify the discrete Gaussian distribution as DΛ,s,x(z) = Ds,x(z)/Ds,x(Λ) =
ρs,x(z)/ρs,x(Λ) for all z ∈ Λ. As Zm is also a lattice, we can declare a discrete
Gaussian distribution for Zm. Thus, by DZm,σ, we express the discrete Gaussian
distribution for Zm around the origin with the standard deviation σ.

2.3 Lattice-Related Hardness Problems

Learning With Errors (LWE)

Definition 1. Learning With Errors (LWE) [18]: Let n,m ≥ 1, and q ≥ 2 be
integers. For s ∈ Zn

q and χ, let the distribution As,χ gained by sampling uniformly

random a ∈ Zn
q and selecting e← χ, and resulting the pair (a,aT · s+ e).

Search-LWE and Decision-LWE are the two versions of LWE problems. For
a given LWE samples Search-LWE is determined to find the secret s. Decision-
LWE is for distinguishing LWE samples and samples selected according to the
uniformly distribution. This paper uses the hardness of the problem Decision-
LWE.

We say, for a prime power q, b ≥
√
nω(log n), and distribution χ, solving

LWEn,q,χ problem is at least as hard as solving SIV Pγ , where SIV P means

Shortest Independent Vector Problem and γ = Õ(nq/b) [9, 22].

Short Integer Solution (SISn,m,q,β) In 1996, SIS was first explained in
seminal work of Ajtai [2]. SIS problem is for finding a sufficiently short nontrivial
integer combination of given uniformly random elements of a certain large finite
additive group, which sums to zero [18].

Definition 2. Short Integer Solution (SISn,m,q,β [18, 22]): For given m uni-
formly random vectors ai ∈ Zn

q , which forms the columns of a matrix A ∈ Zn×m
q ,

SIS requires to find the vector z ∈ Zm, which is a nonzero vector and satisfies
∥z∥ ≤ β and Az = 0 mod q.

We say, for any m, β, and for any q ≤
√
nβ, solving SISn,m,q,β problem with

non-negligible probability is at least as hard as solving SIV Pγ problem, for some
γ = β·O(

√
n) [9].

2.4 Lattice Algorithms

To construct the propose scheme, this paper uses algorithms SampleD [9, 16]
and GenTrap [1, 9, 16]. The algorithm SampleD is a randomized nearest-plane
algorithm and it samples from a discrete Gaussian DΛ,s,c over any lattice Λ.
GenTrap is a preimage sampleable trapdoor function (PSTF).

– SampleD(TA, A, u, σ): On inputs a vector u in the image of A, a trapdoor
TA, and σ = ω(

√
n log q log n), SampleD results z ∈ Zm sampled from the

distribution DZm,σ. The output z should assure A · z = u mod q.
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– GenTrap(n, m, q): GenTrap(n, m, q) results a matrix A ∈ Zn×m
q and a

trapdoor TA for any given integers n ≥ 1, q ≥ 2, and sufficiently large
m = O(n log q). The distribution of the resulted A is negl(n)-far from the
uniform distribution.

2.5 One-Time Signature Scheme

Our new scheme uses one-time signature scheme OT S = (OGen, OSign, OVer)
[17]. OT S schemes are digital signature schemes based on one-way functions.
While OGen is an algorithm for generating keys, OSign and OVer are algorithms
for producing signatures and verifying signatures. OGen takes (1n), and creates
a signing, verification key pair (osk, ovk). For osk and a message M, OSign
produces a signature Σ. OVer takes as inputs ovk, a message M, and a signature
Σ and outputs ⊤ or ⊥ [7].

3 Applying VLR Group Signature Schemes with
Time-bound keys to the Guest-Managing System

This section first discusses the primitives used to construct the new VLR group
signature scheme with time-bound keys and then explains the application of the
guest-managing system. Thus, it defines the general VLR group signature scheme
and the dynamical-almost full anonymity with the scheme proposed in [20]. Next,
it describes time-bound keys. Finally, it discusses the application of time-bound
keys and VLR scheme on guest managing system.

3.1 VLR group signature schemes

Even though general group signature schemes have four algorithms, KeyGen,
Sign, Verify, and Open, group signature schemes with VLR have of only the first
three algorithms. Since VLR group signature schemes have an implicit tracing
algorithm which requires to execute Verify for each member until the signer is
revealed, those schemes do not need the algorithm Open for tracing signers.

– KeyGen(n,N ): KeyGen is a randomized PPT algorithm, and on input of n
and N it produces a group public key gpk, a set of group members secret
keys gsk = (gsk[0], . . . ,gsk[N− 1]), and a set of group members revocation
tokens grt = (grt[0], . . . ,grt[N−1]). While n ∈ N is the security parameter,
N is the number of group users.

– Sign(gpk, gsk[d ], M ): Sign is a randomized algorithm that creates a group
signature Σ on a given message M. Sign takes secret signing key gsk[d ], the
group public key gpk, and a message M ∈ {0, 1}∗ as inputs.

– Verify(gpk, RL, Σ, M ): Verify is a deterministic algorithms. With the given
group public key gpk Verify checks if the input signature Σ is valid for the
input message M and validates the signer not being revoked using the latest
RL.
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3.2 Dynamical-almost-full anonymity

In the full -anonymity game [3] between an adversary and a challenger, in the
beginning, the challenger gives all the secret signing keys of the members to the
adversary. However, for VLR group signature schemes we cannot achieve the
full-anonymity because VLR group signatures have tokens and tokens cannot be
given to the adversary. If any token is gained by the adversary, he can execute
the algorithm Verify with the token he has and can identify whether the owner
of the token generated the signature or not. In previous VLR group signature
schemes [13], tokens for the members are formed using a part of the secret
signing keys of the members. Thus, we cannot allow the adversary to get any
secret signing keys also because he can obtain the tokens from the secret signing
keys. Hence, VLR group signatures rely on the selfless-anonymity which restricts
revealing any information related to the challenging signature of the adversary.

The scheme for the VLR group signatures with both member registration and
revocation, given in [20], provides stronger security than the selfless-anonymity
called dynamical-almost-full anonymity. In the beginning of the anonymity game
of the dynamical-almost-full anonymity, the challenger gives all the present
members’ secret signing keys to the adversary. Thus, the dynamic-almost-full
anonymity is applicable only for the schemes where the tokens are generated
separately to the secret signing keys. Then the anonymity game of the dynamical-
almost-full anonymity enables the adversary insert new members. However, at
the time of adversary registering as a new user, we do not provide his revoca-
tion token to him. The adversary can request revocation token of any member
later. At the challenging phase, we generate the challenging signature only for
the noncorrupted members added by the adversary. Thus we do not create a
challenging signature for members whose token is revealed to the adversary and
who is not added by the adversary as new members.

3.3 Time-bound keys

When members are joining a group temporarily, the size of the revocation list
(RL) increases quickly. Thus the verifiers have to check whether the signer of a
given signature is valid by scanning a long list. Checking a long list decreases the
efficiency of Verify. Chu et al. [8] suggested a solution called time-bound keys for
reducing the cost of the revocation check. In Chu’s scheme, the group members’
keys and the signatures have expiration dates. At the time of adding a new user
to the group, the group manager should determine an expiration date for the
new member keys. Thus every registered member’s secret key has an expiration
date, and only the members having non-expired keys are allowed to generate
signatures. This cuts down the cost of checking the expired members’ (naturally
revoked members) revocation statue at the signature verification. Since expired
members are not allowed to generate valid signatures, the group manager does
not need to add their revoked details to the revocation list RL.

To efficiently compare two dates, Chu et al. [8] have used the date format
as “YYMMDD” in integer form. For instance, the date 2019 December 24th is
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indicated as “191224”. Moreover, t1 > t2 represents that the date t1 is later than
the date t2. In Chu’s scheme, the key expiration date, which is selected by the
group manager, is represented by tr. Moreover, at the signature generation, the
signer is allowed to choose a signature expiration date ts which should satisfy
tr > ts and ts ≥ tv, where tv is the verification date. A valid signature should
satisfy tr > ts ≥ tv.

3.4 VLR group signature scheme with time-bound keys for a
Guest-managing system

When a guest Gi proceeds the hotel check-in, Gi provides check-in information
including information regarding his stay. The receptionist or the hotel manager
or the system issues Gi a key-card with some details that he is allowed to access.
The key-card only can be used until the leaving date. This restriction can be
applied using time-bound keys. Thus the key-card have an expiration date (tri).
The guest Gi can utilize the hotel amenities (bar, pool, spa, and gym) using
the key-card until he leaves. However, the key-card will not reveal any personal
information like name, room number of the guest. The system can only verify
the key-card is not expired and is valid to use the facility. All the amenities have
a limited period of utilizing them. For instance, the pool can be used only for two
hours at a time. To control the period of using amenities, again the time-bound
keys can be used. Each time the guest is accessing an amenity can be regarded as
issuing a signature. Thus, the expiration time of using the pool is the expiration
time of the signature (ts).

We use the date format as “YYYYMMDDhhmm”. If Gi’s check-out date
and time is 2018 August 09 morning 10, then his key-card expiration time
(tr) is 201808091000. If he accesses the gym in 2018 August 07 evening 4:00
which is allowed only for two hours, then his signature expiration time will be
201808071800. After finishing the work out in the gym, he has to enter his card
to go out of the gym. At that time system will validate his signature expiration
time with the leaving time. If he has used the gym for more than two hours,
then he has to pay the penalty. If he used an expired key card, then he will not
be able even to enter the gym. When accessing the gym, the key-card generates
a signature with signature expire time (ts), and the system validates that the
signature expiration time is greater than or equal to the current time (tv). When
he leaves, the system again checks that the signature expiration time is greater
than or equal to the current time (tv). For instance, as discussed before, the guest
enters the gym at 4 pm on 2018 August 07, and the gym allows only two hours
of work-out. Then ts is 201808071800 and entering time (tv) is 201808071600.
Since ts > tv and tr > ts he is allowed to enter. If he finishes the workout at
5:50 pm then the system allows him to exit without any issue since the leaving
time (201808071750) tv < ts. But if he tries to leave at 6:30 pm (201808071830),
then system asks him to pay additional charge because tv > ts (he used the gym
extra 30 minutes).

Using the time-bound keys, we can manage the use of amenities and the
room in a hotel guest-managing system as discussed.
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4 New Scheme

This section first, defines the underlying interactive protocol that the propose
scheme uses to confirm the validity of the signers. Then this section provides the
description of the new scheme.

4.1 Supporting zero-knowledge protocol

In this section, we briefly explain the zero-knowledge proof system that our
scheme uses as underlying interactive protocol. Let COM be the statistically
hiding and computationally binding commitment scheme [11]. In our scheme,
matrices F, A, B, V, G, H and vectors u, v, c1, c2 are the public parameters.
The witness of the prover consists of vectors x, bin(z), r, s, e1, and e2. The
goal of the prover is to prove F · x = H4n×2m · bin(z) (as given in [14]) and
V · (A · r) + e1 = v mod q and (c1 = BT s+ e1, c2 = GT s+ e2 + ⌊q/2⌋bin(zi))
(as discussed in [19]) to the verifier. Here Hn×n⌈log q⌉ ∈ Zn×n⌈log q⌉ is a “power-
of-2” matrix and z = Hn×n⌈log q⌉ · bin(z) for any z ∈ Zn

q .

4.2 Description of the new Scheme

The new scheme has algorithms, KeyGen, Join, Sign, Verify, Open, and Revoke.
The proposed scheme is constructed based on the scheme given in [20]. Using
the time-bound keys the methods in the scheme given in [20] are modified and
the new scheme is presented. Thus, the algorithms KeyGen (setup), Open, and
Revoke are same as the algorithms given in [20]. The algorithms Join, Sign, and
Verify are modified by adding the generation and validation of the time-bound
keys.

The security parameter is denoted by λ. We denote the maximum num-
ber of predicted members in a group by N = 2ℓ. Then we choose lattice
parameter n = O(λ), prime modulus q = Õ(ℓn3), Gaussian parameter σ =
Ω(
√
n log q log n), dimensionm = 2n⌈log q⌉, infinity norm bounds β = σω(logm)

and b =
√
nω(log n).

The algorithms of the new scheme are as follows.
Setup: The randomized algorithm KeyGen(1n, 1N ) works as follows.

1. Obtain A ∈ Zn×m
q and a trapdoor TA by executing the PPT algorithm

GenTrap(n, m, q).

2. Sample vector u
$← Zn

q .
3. Execute GenTrap(n, m, q) to obtain the encryption and decryption keys

B ∈ Zn×m
q and a trapdoor TB.

4. Select a matrix F
$← Z4n×4m

q .
5. Finally, output (A, B, F, u) as the group public key gpk, the group man-

ager’s (issuer/ issuing manager) secret key ik:= TA, and the tracing man-
ager’s (opener) secret key ok:= TB.
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Join: A guest (new user) i having a personal public key and private key
pair (upk[i],usk[i]) communicate with the group manager to join the group by
following the steps below.

1. User i, the new user (guest), samples a discrete Gaussian vector xi ← DZ4m,σ,
and computes zi ← F · xi ∈ Z4n

q . Then he makes a signature Σjoin ←
Sig(usk[i], zi) and passes zi, and Σjoin to the group manager. Here, since
the user (guest) has a leaving date (check-out date and time) he sends that
date and time also along with zi and Σjoin. Thus the user (guest) i sends
the group manager zi, Σjoin , and tri .

2. The group manager confirms that zi was not owned by any previous member
and tri is correct and later than the current date. Then he validates Σjoin

is a valid signature created on zi, using Vf(upk[i], zi, Σjoin). He terminates
if zi, and Σjoin is invalid. Otherwise he signs the user’s index d = bin(zi)
and tri , using his secret key bin(zi) is the binary representation of zi. Then
he generates the certificate for the index and the expiration date (check-
out date) cert-indexi = Sign(ik, (bin(zi), tri)). Thus, later the user (guest) i
cannot fake his check-out date and time.

The group manager selects Ri
$← Zn×4n

q and computes wi = Ri · zi. Then
he samples a vector ri ∈ Zm ← SampleD(TA,A,u − wi, σ), and creates a
certificate for the token cert-tokeni = Sign(ik, (A · ri)) (ik = TA).

Next in the registration table, he records the information of the new user i as
reg[i] ← (i, d,upk[i], zi, Σjoin,Ri,wi, tri , ri, 1) and makes the record active
(1).

Finally, the group manager transfers the new member’s member-certificate
certi = (cert-indexi, cert-tokeni,Ri, (A · ri), tri).

Sign: Sign(gpk,gsk[i], certi,M, ts) is a randomized algorithm and on the
given message M it produces a signature Σ employing the signer (guest) secret
key gsk[i] = xi as follows.

1. Let H1: {0, 1}∗ → Zn×ℓ
q , H2: {0, 1}∗ → {1, 2, 3}t and G: {0, 1}∗ → Zn×m

q .
H1, H2, and G are hash functions modeled as a random oracle.

2. Parse gpk as (A, B, F, u).

3. Parse certi as (cert-indexi, cert-tokeni,Ri, (A · ri), tri).
4. If ts > tri then return ε.

5. Run OGen(1n)→ (ovk,osk).

6. Encrypt the index d = bin(zi), where zi = F · xi.

(a) Let G = H1(ovk) ∈ Zn×2m
q .

(b) Sample s ← χn, e1 ← χm and e2 ← χℓ.

(c) Compute the ciphertext (c1, c2) pair
(c1 = BT s+ e1, c2 = GT s+ e2 + ⌊q/2⌋bin(zi)).

7. Select ρ
$← {0, 1}n, let V = G(A,u,M, ρ) ∈ Zn×m

q .

8. Get v = V·(A·ri)+e1 mod q (||e1||∞ ≤ β with overwhelming probability).
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9. Execute Verify(A, (bin(zi), tri), cert-indexi) to prove that cert-indexi is gen-
erated on (bin(zi), tri) and Verify(A, (A · ri), cert-tokeni) to prove that
cert-tokeni is created on (A · ri). Next make a proof as in Section 4.1, to
show the signer is valid, above v is sincerely computed, and index is cor-
rectly encrypted. Then repeat the protocol given in Section 4.1 t = ω(log n)
times to make the soundness error of the interactive protocol negligible. Fi-
nally, make it non-interactive using the Fiat-Shamir heuristic as a triple,
Π = ({CMT (k)}tk=1, CH, {RSP (k)}tk=1), where CH = ({Ch(k)}tk=1) =
H2(M, {CMT (k)}tk=1, c1, c2).

10. Compute OT S; sig = OSig(osk, (c1, c2,Π)).
11. Produce the signature Σ = (ovk, (c1, c2), ρ,Π, sig,v, tri , ts).

Verify: Verify(gpk,M, Σ,RL, tv) is a deterministic algorithm and it proceeds
as follows, where RL = {{ui}i} and tv is the current time of validation.

1. Parse Σ as (ovk, (c1, c2), ρ,Π, sig,v, tri , ts).
2. If tv > ts or ts > tri then return 0.
3. Get V = G(A,u,M, ρ) ∈ Zn×m

q .
4. If OVer(ovk, ((c1, c2),Π), sig) = 0 then output 0.
5. Parse Π as ({CMT (k)}tk=1, {Ch(k)}tk=1, {RSP (k)}tk=1).
6. If (Ch(1), . . . , Ch(t)) ̸= H2(M, {CMT (k)}tk=1, c1, c2) return 0 else continue.
7. Using the verification steps of the commitment scheme in Section 4.1 for

k = 1 to t validate RSP (k) with respect to CMT (k) and Ch(k). Return
invalid if any of the conditions fails.

8. Compute e
′

i = v −V · ui mod q for each ui ∈ RL to certify whether there
exists an index i such that ∥e′

i∥∞ ≤ β. If so output invalid and abort.
9. Output valid.

Open: Open(gpk, ok, reg, M, Σ) acts as bellow. Here ok = TB.

1. Let G = H1(ovk).
2. Use TB to obtain Y ∈ Zm×2m. Here Y is a small norm matrix and B·Y = G

mod q.
3. Compute bin(zi) = ⌊(c2 −YT · c1)/(q/2)⌉, identify the signer querying the

registration table reg with bin(zi), and return the signer’s index.

Revoke: Revoke(gpk, ik, i, reg, RL) works as below.

1. Query reg for i to get the revocation token (A · ri) of the revoking member.
2. Insert (A · ri) to RL and modify reg [i ] to inactive (0).
3. Output RL.

5 Correctness and Security Analysis of the Scheme

This section provides an analysis of the correctness and the security of the
scheme.
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5.1 Correctness

Theorem 1. For all tr, ts, tv, RL,M ∈ {0, 1}∗, (gpk,ok, ik) ← GKg(1λ) and
(gsk[i], grt[i], certi)← Join,

Verify(gpk, M, Sign(gpk, gsk[i], grt[i], M, ts), RL, tv) = valid ⇐⇒ grt[i] /∈
RL and tr > ts ≥ tv and

Open(gpk, ok, reg, M, Sign(gpk, gsk[i], grt[i], M, ts)) = i.

The new scheme allows only new users whose public keys are not used before
to join the group. The group manager validates the new user and issues a cer-
tificate with the key-expiration time (guest’s check-out). Thus any user cannot
pass the signature generation with a fake expiration date (tr). Moreover, at the
time of signature generation, first, the key-expiration is checked. If the signer
cannot provide a valid signature expiration date, then he cannot proceed with
generating signatures. This confirms that the no expired member can generate
a signature. Next the signatures which are only produced by active and hon-
est users with a valid signature expiration date are accepted by Verify. If the
provided signature is expired, then the signature verification fails. Further, sig-
natures created by users whose token is in RL are not accepted by Verify. Both
Sign and Verify ensures this condition. Completeness of the underlying proof
system ensures to accept legitimate signatures always. The soundness of the un-
derlying proof system assure that revoked signers fail get acceptance for their
signatures. Open returns the index of the signature owner with overwhelming
probability. Open computes bin(zi), and get the information of the signer from
reg.

Above discussion proves the correctness of the new scheme.

5.2 Anonymity (dynamical-almost-full anonymity)

Theorem 1: Under the hardness of LWEn,q,χ problem the new scheme is
dynamical-almost-full anonymous in the random oracle mode.

With the following sequence of games we prove the anonymity of the proposed
scheme.

Game 0: First, the challenger C obtains a group public key gpk and other
keys from KeyGen(1n, 1N ). Next, C delivers gpk and all the group members’
secret keys gsk to the adversaryA. In the query phase, A can access opening
for any desired signature and he can ask for any member revocation tokens.
Furthermore, A can add new users to the group. When A requests to add a new
user, C validates and adds the new user details to the registration table reg and
a list called HU. But C will not give the revocation token of the new user. Thus,
even the member certificate including the token and the key-expiration date and
time is generated and saved, the member certification will not be given in the
registration query. C gives a success message only for member registration of
the adversary. Moreover, when A requests to reveal any user token, C traces the
requested user’s index by adding the request to a list called TU, and returns
the member certificate cert which was saved in the registration table at the
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time of registering. In the challenge phase, A sends two indices (i0, i1) with a
message M∗. Only if (i0, i1) are newly added (in HU) and are not used for
querying tokens (not in TU), then C makes and responds back a signature Σ∗

= (ovk∗, (c∗1, c
∗
2), ρ

∗,Π∗, sig∗,v∗, t∗ri , t
∗
s) ← Sign(gpk,gsk[ib]

∗, certib ,M
∗, t∗s) for

a random b ← {0, 1}. Finally, A provides b′ ∈ {0, 1} as the guess of b. If b′ = b
then outputs 1 or 0 otherwise.

The adversary may try to win the game by sending the challenging indices
with two different expiration dates. However, he cannot use this trick to win the
game as the challenger will generate the challenging signature only if both indices
having valid expiration dates. Both indices should satisfy tr > ts. Moreover, it
should satisfy tr > ts ≥ tv. Thus the adversary cannot provide any indices with
key-expiration dates that fail only at the time of validating and that passes
signature generation. Thus, the adversary cannot attack the anonymity of the
scheme using the time-bound keys.

Game 1: In this game, C makes a trivial amendment comparing to the above
game Game 0. The challenger C creates OT S key pair (ovk∗,osk∗) at the start
of the game which is generated at the time of signature generation in general.
If A request opening of a valid signature Σ = (ovk, (c1, c2), ρ,Π, sig,v, tr, ts),
where ovk=ovk∗, then C aborts the game by providing a random bit. Besides,
ovk=ovk∗ contradicts the strong unforgeability of OT S. On the other hand, as
adversary cannot know ovk∗, ovk=ovk∗ has negligible probability. Moreover,
if A provides a valid signature, which satisfies ovk=ovk∗, then sig is a forged
signature. We believe that A does not ask for opening of a valid signature with
ovk∗. As a result, C halting the game is negligible.

Game 2: In this game, C creates the random oracle H1 at the start, which
is generally obtained at the signature generation. In this game, at the beginning,
C substitutes B and G, which are the encrypting matrices. C picks B∗ ∈ Zn×m

q

and G∗ ∈ Zn×ℓ
q in uniformly random. Then he sets H1(ovk

∗)=G∗. To response
the opening oracle queries of A with Σ = (ovk, (c1, c2), ρ,Π, sig,v, tr, ts), C
chooses Y ← (Dzm,σ)

ℓ, and computes G = B∗Y ∈ Zn×ℓ
q . This G is used to

response the opening and records (ovk, Y, G) to be reused if the adversary A
repeats the same queries for H1(ovk). Since the distributions of G is statistically
close to the uniform over Zn×ℓ

q [9], this game is indistinguishable from Game 1.

Game 3: In this game, without genuinely producing the non-interactive proof
Π, without using the witness C simulates the proof. For this he executes the
simulator for each k ∈ [t] and then programs the random oracle H1 respectively.
The challenging signature Σ∗ is statistically close to the signature in the previ-
ous games as the proof system is statistically zero-knowledge. Thus, Game 3 is
indistinguishable from previous game.

Game 4: C substitutes the naive revocation token with a vector sampled
uniformly. In general, v = V ·grt[ib]+e1 mod q. But in this game, C uniformly

samples t
$← Zn

q and get v = V · t + e1 mod q. V is uniformly random over
Zm×n
q and e1 is sampled from the error distribution χ. Since C substitutes only

grt[ib] with t and the rest of the game is same as previous game, the two games
are statistically indistinguishable.
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Game 5: In this game, v is taken uniformly. In this game, C makes the
revocation token details without depending on the challenging bit b. Accordingly,

C gets y
$← Zm

q . Then he sets v = y. In Game 4, the pair (V, v) is a proper

LWEn,q,χ instance. In this game C substitutes v with y
$← Zm

q which is sampled
uniformly. The adversary can solve Decision-LWE problem, if he can distinguish
v and y. Since the lattice problem LWEn,q,χ is hard, Game 5 is indistinguishable
from Game 4.

Game 6: In this game C amends the making of ciphertext (c∗1, c
∗
2) uniformly.

He sets c∗1 = x1 and c∗2 = x2 + ⌊q/2⌋db. The vectors x1 ∈ Zm and x2 ∈ Zℓ

are uniformly random. db is the index of the challenging bit. The rest of the
game is same as Game 5. Since LWEn,q,χ is hard, Game 5 and Game 6 are
indistinguishable.

Game 7: C creates Σ∗ totally independent of the bit b. He picks uniformly
random x′

1 ∈ Zm
q and x′

2 ∈ Zℓ
q, and sets c∗1 = x′

1 and c∗2 = x′
2. Game 7 is

statistically indistinguishable from Game 6. The advantage of the adversary in
this game is 0 because the signature is totally independent from the challenger’s
bit b.

Hence, these games prove that the new scheme with the time -bound keys is
secure with the dynamical-almost-full anonymity.

5.3 Traceability

Theorem 2: Under the hardness of SIS problem, the new scheme is traceable
in the random oracle model.

We take an algorithm B that capable of solving SIS problem with non-
negligible probability. An adversary A having gpk and ok returns (M, Σ) in
the traceability game. Moreover the adversary A has facility to add new users
and replace members’ personal public keys. Also, A is allowed to query any
member secret signing key and revocation token. By using oracles, B answers
the queries done by A.

Finally, the adversary A outputs a fake signature
Σ∗=(ovk∗, (c∗1, c

∗
2), ρ

∗,Π∗, sig∗,v∗, t∗r , t
∗
s) on message M∗. B opens the

signature Σ∗ and identify the index. The improved Forking Lemma [4]
ensures that, with probability at least 1/2, B can get 3-fork involving tuple
(M, {CMT (k)}tk=1, c1, c2) running A up to 32·QH/(ε−3−t) times with the same
records. Namely, the first κ∗ − 1 random oracle queries A returns the answer
given for Ch1, . . . , Chκ∗−1 as the first run. From the κ∗ − th query onwards A
obtains a fresh random oracle values Ch′

κ∗ , . . . , Ch′
QH2

at each new run. A simple

computation shows that: Pr[∃j ∈ {1, . . . , t}] : {Ch
(1)
i , Ch

(2)
i , Ch

(3)
i } = {1, 2, 3}

with probability 1 − (7/9)t. Under the condition of the existence of such index
i, one parses the 3 forgeries corresponding to the fork branches to obtain

(RSP
(1)
i , RSP

(2)
i , RSP

(3)
i ).

We can use the knowledge extractor of the underlying argument system to
get vectors (x, bin(z), r, s, e1, e2) which satisfy the conditions of underlying in-
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teractive protocol. Then B can get a vector which is the secret signing key of
the forgery. Furthermore this vector is an answer for the SIS problem.

This confirms the traceability of the new scheme.

5.4 Non-frameability

Theorem 3: If SIS problem is hard, then the new scheme is non-frameable in
the random oracle model.

We take an adversary A who can create a forgery signature that opens to a
honest user i who did not generate it. Then we make a PPT algorithm B that
figure out a solution for SIS problem. B knows authority keys and B creates
the group public key gpk truly. Then B replies to the queries made by A. A
can work as a corrupted group manager and registers a new user i to the group.
With user i if A asks to make a signature on a message M, then B creates
and returns the signature Σ=(ovk, (c1, c2), ρ,Π, sig,v, tr, ts). Finally, A outputs
(M∗, Σ∗=(ovk∗, (c∗1, c

∗
2), ρ

∗,Π∗, sig∗,v∗, t∗r , t
∗
s), which opens to i∗ who did not

create Σ∗. B has a short vector zi∗ = F · xi∗ mod q. B should have another
short vector zi′ = F · xi′ mod q to solve SIS instance. To obtain such a vector,
B replays A sufficient times and applies Improved Forking Lemma [4]. Then,
B can get a short vector x̄, where zi∗ = F · x̄ mod q. Moreover, x̄ ̸= xi∗ with
overwhelming probability according to Stern-like proof of knowledge. A nonzero
vector h = xi∗ − x̄ is an answer for SIS problem.

This confirms the non-frameability of the new scheme.

6 Conclusion

In this paper, we presented a VLR group signature scheme with time-bound
keys that can be applied in the hotel guest-management system. The proposed
scheme used an existing scheme and discussed the advantages and security when
applying the time-bound keys. As a result, this paper provided a lattice-based
VLR group signature scheme with time-bound keys. The proposed scheme can
be apply for systems like staff management, subscribers of a telephone com-
pany, and visitors accessing facilities. However, this paper did not present an
implementation of the proposed system.
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