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Abstract. Signature schemes with Verifier-Local Revocation (VLR) fail
to achieve stronger anonymity notion, full-anonymity. In full-anonymity,
it is free to corrupt the secret signing keys. Secret signing keys of VLR
schemes consist of tokens which can be used to identify the users. Thus
VLR schemes restrict corrupting secret signing keys. VLR schemes can
achieve full-anonymity by separating tokens from secret signing keys.
However, separation of tokens gives space to signers to replace tokens
with fake values. Generating signatures with fake tokens can be prevented
with a suitable proof system. This paper proposes a new zero-knowledge
protocol to support provers to convince verifiers, that attributes used for
creating the signature are valid and have naive tokens. Moreover, this
paper offers a new Attribute-Based Group Signature (ABGS) scheme,
that uses the proposed protocol and achieves full anonymity.
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1 Introduction

Attribute-Based Group Signatures (ABGS) allow a verifier to request a signature
from a group who possesses specific attributes [14]. Thus, only a group member
possessing required attributes can sign anonymously on behalf of the group.
ABGS schemes belong to the family of Digital Signature (DS) schemes such as
Group Signature (GS) schemes and Ring Signature (RS) schemes. ABGS scheme
is a combination of Group Signature Schemes and Attribute-Based Signatures.

Group Signatures were first introduced by Chaum and Van Heyst [2], and
since then, different lines of works were presented to achieve security and effi-
ciency. However, due to the two characteristics; Anonymity and Traceability of
naive group signature schemes, most of the researchers interested in applying
Group signatures in real-life systems. The anonymity allows any group member
to output a signature while hiding his identity among the group members. The



2 M. N. S. Perera et al.

traceability grants an authorized person to cancel the anonymity of a valid sig-
nature. Thus, group signature schemes produce signatures which are anonymous
to the verifiers (outsiders) and known to the authorities.

Attribute-Based Signatures (ABS), which is a generalization of the digital
signatures, allows a user to generate a signature over some specified attributes
while being anonymous. In an ABS scheme, a user can generate a signature
only if he possesses the attributes required in a given policy. Thus, the signer
should possess the necessary attributes to create a signature, and the verifier may
check whether the signature is generated by satisfying the policy requirements.
The security of ABS ensures the privacy of the signer. Thus, the signer should
not reveal any information related to the attributes. ABS schemes were first
introduced by Maji et al. [21] in a preliminary version. Later, other ABS schemes
[4,5,7,9,10,17,18,25] presented improvements like pairing efficiency, constant-size
signatures, user-control linkability, and decentralized-traceability.

Dalia Khader proposed the first Attribute-Based Group Signature (ABGS)
scheme [14]. In their scheme, the verifier can determine the role of the signer.
Again, Dalia Khader presented another ABGS scheme with a revocation method
[13]. However, both schemes are not secure under quantum attacks as they both
were constructed using bilinear mappings. Recently, Kuchta et al. [15] and Zhang
et al. [27] presented ABGS schemes from lattices. While Kuchta’s work focuses
on member registration, Zhang’s work produces an ABGS scheme with revoca-
tion. In Zhang’s scheme [27], a member revocation method called Verifier-local
Revocation (VLR) is used to manage member revocation and attribute revoca-
tion.

VLR, which requires only to update the verifiers with revocation messages
when a member is revoked, seems to be the most efficient revocation method
at present. In group signature schemes, every member of a group has a token,
and when he is revoked, this token is added to a list called revocation list (RL).
The verifiers can check the validity of the signer using RL. In the same way, in
ABGS schemes, every attribute of a member is assigned a token. Thus, when
an attribute of a member is revoked, the related token is added to RL. Thus,
any member with revoked attributes which are required in the policy cannot
generate a valid signature.

The tokens of members are usually generated as a part of the secret sign-
ing keys in almost all the group signature schemes with VLR [16]. Thus, the
adversary can attack the system if he knows the secret signing keys of the mem-
bers. He can execute the verification algorithm with the tokens which he can
obtain from the secret signing keys, and identify the signer. Thus, the scheme
in [27] achieves weaker security notion called selfless-anonymity as most of the
VLR group signature schemes. In selfless-anonymity, we assume that the adver-
sary cannot get any secret signing keys. Thus, the schemes with VLR achieve the
selfless-anonymity. On the other hand, VLR group signature schemes like [11,23]
provided solutions to achieve stronger security than the selfless-anonymity for
VLR group signature schemes. However, still, there is no Attribute-Based VLR
Group Signature scheme that achieves full-anonymity. The full-anonymity pro-
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posed in [1] is believed to be the stronger version of anonymity. It requires to
ensure the anonymity of a group signature scheme even all the member secret
signing keys are exposed to an outsider.

To achieve full anonymity for ABGS with VLR, we require tokens to be
independent of secret signing keys. Moreover, to prevent forging tokens, the
signers should convince the verifiers that the tokens of the possessing attributes
are valid, without disclosing them. As a result, we require a new zero-knowledge
protocol to support such schemes.

Contribution

First, we propose a new zero-knowledge protocol which is built on the protocols
given in [3, 20, 27]. Then we construct our new ABGS scheme based on the
threshold-ABS scheme given in [3]. The construction of the protocol relies on
the hardness of SIS and LWE lattice problems. We use decomposition, extension,
masking, and permutation techniques to hide the secret data and convince the
verifier that the signer has valid information. Using the Fiat-Shamir heuristic [6],
we can make our new interactive protocol to non-interactive protocol.

In our scheme construction, we separate the token generation from the secret
signing keys of the attributes. Since the tokens are independent of the secret
signing keys, even though the secret signing keys are revealed to the adversary,
he cannot attack the anonymity of the scheme. On the other hand, because of
the independence of the tokens, members can fake the tokens of the attributes.
To prevent such kind of forge, we require the signers to prove the nativity of
the tokens while hiding them. Thus, the signers should convince the verifiers
that he has relevant attributes, his attribute tokens are not being revoked, and
those tokens are valid in zero-knowledge. We ensure that our new zero-knowledge
protocol can satisfy those requirements.

2 Preliminary

2.1 Notation

We denote matrices by upper-case bold letters such as A and vectors by lower-
case bold letters such as v. Concatenation of matrices are denoted by [A|B]
and vectors by [v∥y]. For any integer k ≥ 1, a set of integers {1, 2, . . . , k} is
denoted by [k ]. If S is a finite set, we present its size by |S|. S(k) indicates
its permutations of k elements and b ←↩ D denotes that b is sampled from a
uniformly random distribution D. The standard notations of O and ω are used
to classify the growth of functions. All algorithms are of base 2.

2.2 Discrete Gaussian Distribution

We consider a discrete Gaussian distribution for a lattice as in [3, 23].
The Gaussian function centered in a vector c with parameter s > 0 is defined

as ρs,c(x) = exp−π∥(x−c)/s∥2

. With respect to a lattice Λ the discrete Gaussian
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distribution is defined as DΛ,s,c(x) = Ds,c(x)/Ds,c(Λ) = ρs,c(x)/ρs,c(Λ) for all
x ∈ Λ.

2.3 Lattices, Hardness of Lattices, and Lattice Related Algorithms

For n,m, and prime q ≤ 2, let B = [b1| · · · |bm] ∈ Zn×mq be linearly independent
vectors in Znq . The n-dimensional lattice Λ(B) for B is defined as

Λ⊥
q (B) = {x ∈ Zm | Bx = 0 mod q},

Λu
q (B) = {x ∈ Zm | Bx = u mod q},

where u ∈ Znq .

Definition 1 (Learning With Errors (LWE)). For integers n,m ≥ 1, and
q ≥ 2, a vector s ∈ Znq , and the Gaussian error distribution χ, the distribution
As,χ is obtained by sampling a ∈ Znq uniformly at random and choosing e ← χ,

and outputting the pair (a,aT · s + e). LWE problem (decision-LWE problem)
requires to distinguish LWE samples from truly random samples ← Znq × Zq.

For a prime power q, b ≥
√
nω(log n), and distribution χ, solving LWEn,q,χ

problem is at least as hard as solving SIV Pγ (Shortest Independent Vector Prob-

lem), where γ = Õ(nq/b) [8, 24].

Definition 2 (Small Integer Solution (SIS)). For uniformly random matrix
A ∈ Zn×mq , SIS requires to find non-zero vector x ∈ Zm, such that A · x = 0
mod q and ∥x∥∞ ≤ β.

Lattice Related Algorithms:

– GenTrap(n, m, q) takes integers n ≥ 1, q ≥ 2, and sufficiently large m =
O(n log q), and outputs a matrix A ∈ Zn×mq and a trapdoor matrix R. The
distribution of the output A is negl(n)-far from the uniform distribution.

– SampleD(R, A, u, σ) takes as inputs a vector u in the image of A, a trap-
door R, and σ = ω(

√
n log q log n), and outputs x ∈ Zm sampled from the

distribution DZm,σ, such that A · x = u mod q.

2.4 Attribute Based Group Signature Schemes

According to the Dalia Khader’s proposal [14], an ABGS scheme consists of five
algorithms, namely, Setup, KeyGen, Sign, Verify, and Open. The ABGS scheme
with VLR given in [27] has only former four algorithms as it employs the implicit
tracing algorithm to track the attributes, which are used to generate a signature.
The implicit tracing algorithm, which is embedded in VLR schemes, requires to
execute Verify for all the user attributes until all the attributes are traced. The
algorithms of a VLR-ABGS scheme are as follows.
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– Setup: On input the security parameter, this algorithm sets other public
parameters and defines the universal set of attributes. Then it assigns vectors
for each attribute and returns all the setup parameters and set of attributes
as a public parameter.

– KeyGen: On input the public parameter and the maximum number of group
members, this algorithm generates a group public key and group manager’s
secret key. Moreover, it generates secret keys and tokens for all the attributes
of all the group members. Finally, it returns the group public key, group
manager’s key, all the user secret signing keys, and user tokens.

– Sign: For a given policy and a message, any member who can satisfy the
conditions of the policy generates a signature with his secret signing key.

– Verify: Given a message, policy and a signature, the verifier validates the
signature on the message and policy and outputs 1 or 0.

2.5 Full-Anonymity

We say that an ABGS scheme is fully anonymous if no polynomial bounded
adversary has a non-negligible advantage against the challenger in the bellow
game.

– Init: The challenger runs Setup and KeyGen to obtain a group public key, a
group manager secret key, and keys and tokens of all the attributes of all the
users. Then challenger gives the group public key and all the secret signing
keys of all the users to the adversary.

– Query Phase 1: The adversary requests indices of the signer and the attributes
for a particular signature. He sends the signature, a message, and a policy
to the challenger.

– Challenge: The challenger outputs a message, a policy, and two indices with
two sets of attributes. The challenger selects one index with the related
attribute set and generates a challenging signature. Then he sends the chal-
lenging signature to the adversary.

– Query Phase 2: The adversary can query of the opening of any signature as
in Query Phase 1 except for the challenging signature.

– Guessing: The adversary guesses the index, which is used to generate the
challenging signature. If he can guess correctly, then he wins the game.

3 Zero-Knowledge Argument of Knowledge Proof System

In this section, we propose an efficient proof of knowledge protocol which enables
a prover P to convince the verifier V that he indeed a group member with a set
of attributes that satisfies the given predicate Γ , and his attribute tokens are
valid and are not in the revocation list RL.

We concern on statistical zero-knowledge argument systems (interactive pro-
tocols). Interactive protocols have two properties called soundness property and
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zero-knowledge property. While the soundness property only holds for compu-
tationally bounded cheating provers, the zero-knowledge property holds against
any cheating verifiers [20].

We are engaging with string commitment scheme, which uses a string as the
committed value and which satisfies the above requirements. Kawachi et al. [12]
presented a more straightforward construction from lattices for string commit-
ment scheme COM. Later, using the Kawachi’s string commitment scheme,
Ling et al. [19] proposed a Stern type zero-knowledge proof of knowledge for lat-
tices. The security of their protocol is based on the hardness of the underlying
ISIS (Inhomogeneous SIS) problem. In other words, to break their protocol, an
attacker needs to solve the underlying ISIS problem. Ling et al. [19] achieved
security by using a technique called Decomposition-Extension.

3.1 Techniques

We define some techniques that were used in the existing protocols [16, 20, 27],
and which we use in the construction of our protocol.

• Decomposition-Extension Technique
Let k = ⌊log β⌋ and the sequence of integers β1, . . . , βk be as follows.
β1 = ⌈β/2⌉;β2 = ⌈(β − β1)/2⌉;β3 = ⌈(β − β1 − β2)/2⌉; . . . ;βk = 1.
Ling et al. [19] observed that an integer z ∈ [0, β], if and only if there exists

z1, . . . , zk ∈ {0, 1} such that z =
∑k
j=1 βjzj .

The above observation allows the prover to efficiently decompose z ∈
[−β;β]m into z̃1, . . . , z̃k ∈ {−1, 0, 1}m such that

∑k
j=1 βj z̃j = z. To ex-

tend a vector z̃ to z ∈ B3m, where B3m is a set of vectors in {−1, 0, 1}3m
having exactly m coordinates equal to −1, m coordinates equal to 0, and
m coordinates equal to 1, we select a random vector ẑ ∈ {−1, 0, 1}2m, and
output z = (z̃∥ẑ). Here ẑ ∈ {−1, 0, 1}2m has (m− λ−1) coordinates equal to
−1, (m− λ0) coordinates equal to 0, and (m− λ1) coordinates equal to 1.

• Matrix-Extension Technique
For a given matrix Ā the extended matrix Ā

∗
is obtained by append-

ing 2m zero − columns to the matrix Ā. For instance, if the given ma-

trix Ā = [A|A0|A1| . . . |Aℓ] ∈ Zn×(2+ℓ)m
q , then the extended matrix Ā

∗ ∈
Zn×(2+2ℓ)3m
q is obtained as

Ā
∗
= [A|0n×2m|A0|0n×2m| . . . |Aℓ|0n×2m|0n×3mℓ].

Using the above techniques, in Stern protocol, the prover P can convince
the verifier V that z ∈ [−β, β]m and Az = A∗ ∑k

j=1 βjzj = u mod q by
demonstrating below two statements.

1. For each j, a random permutation of zj belongs to B3m. Thus, zj ∈ B3m

and z̃j ∈ {−1, 0, 1}m. This will convince that z ∈ [−β, β]m.
2. A∗ ∑k

j=1 βj(zj + rj) − u = A∗ ∑k
j=1 βjrj mod q, where A∗ is the ex-

tended matrix of A and r1, . . . , rk ∈ Z3m
q are uniformly “masking” vec-

tors for zj . This convinces that Az = A∗ ∑k
j=1 βjzj = u mod q.
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• For permutations π, ψ ∈ S3m; τ ∈ S2ℓ, ξ ∈ Sp, and for a vector z =

(z−1∥z0∥z1∥ . . . ∥z2ℓ) ∈ Z(2+2ℓ)3m
q we define,

Fπ,ψ,τ,ξ(z) = (π(zξ(−1))∥ψ(zξ(0))∥ψ(zξ,τ(1))∥ . . . ∥ψ(zξ,τ(2ℓ))).
Fπ,ψ,τ,ξ(z) rearranges the order of 2+2ℓ blocks z−1, z0, . . . , z2ℓ according
to ξ and the order of 2ℓ blocks z1, z2, . . . , z2ℓ according to τ . Then it
permutes block z−1 according to π and the other (1+2ℓ) blocks according
to ψ.

• For a given z̄ = (x∥y∥d1y∥ . . . ∥dℓy) ∈ Z(2+ℓ)m, we say, d ∈ {0, 1}ℓ, if
d∗ = (d1, . . . , dℓ, dℓ+1, . . . , d2ℓ) ∈ B2ℓ and the random permutation of d∗

is in the set of B2ℓ, where d∗ is the extension of d and B2ℓ is the set of
vectors in {0, 1}2ℓ having Hamming weight ℓ.
• We say, z ∈ VALID(d∗) if z ∈ {−1, 0, 1}(2+2ℓ)3m and there exits x,y ∈
B3m, such that z = (x∥y∥d1y∥d2y∥ . . . ∥d2ℓy).

Based on the above discussion, we build our ZK-proof system.

3.2 Underlying Interactive Protocol

For an attribute i that a user has, we assign a vector zi sampled from DZ2m,σ,
which satisfies ∥zi∥∞ ≤ β. For an attribute i that the user does not have, we
assign a vector zi sampled from DZ2m,σ, which does not satisfy ∥zi∥∞ ≤ β.

Suppose a user with index d possesses valid credentials for a set of attributes
Sd = {u1,u2, . . . ,ua} and the given predicate is Γ = {t, S ⊆ Att, t ∈ N ∧ (S =
u1, . . . ,up)}, where Att is the universal set of attributes {u1,u2, . . . ,uu} and Γ
requires the signer to satisfy at least t attributes out of S. Let Sm = S ∩Sd and
Sr = S \ Sm, where |Sm| = t and |S| = p− t.

– The public parameters are: a matrix (A,A0,A1, . . . ,Aℓ) ∈ Zn×(2+ℓ)m
q , a

set of vectors {ui}pi=1, a threshold predicate Γ = (t, S), matrices {Bi ∈
Zm×n
q }pi=1, and vectors {bi ∈ Zmq }

p
i=1, where t ≤ |S| = p.

– The prover’s witnesses are: the index d ∈ {0, 1}ℓ, t vectors zi =
(x∥y∥d1y∥. . . ∥dℓy) ui ∈ Sm, where ∥zi∥∞ ≤ β, p − t vectors zi =
(x∥y∥d1y∥. . . ∥dℓy) for ui ∈ Sr, p vectors ti ∈ Zm, and p vectors ei ∈ Zm.

– The prover’s goal is to convince the verifier in zero knowledge that:

• For i ∈ [t], Adzi = ui mod q and ∥zi∥∞ ≤ β, where Ad = [A|A0 +∑ℓ
i=1 diAi].

• For i ∈ [p− t], Adzi = ui mod q and ∥zi∥∞ ≰ β.
• For i ∈ [p], ∥ei∥ ≤ β and Bi · (A · ti) + ei = bi mod q.
• For i ∈ [p], (A · ti)+ (A′

d · zi) = ui mod q, where A′
d = [0 ∈ Zn×mq | 0 ∈

Zn×mq +
∑ℓ
i=1 di ·Ai].

Both the prover P and the verifier V compute the following matrices.

– Ā
∗

= [A|0 ∈ Zn×2m|A0|0 ∈ Zn×2m| . . . |Aℓ|0 ∈ Zn×2m|0 ∈ Z2×3mℓ] ∈
Zn×(2+2ℓ)3m
q .
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– {(B∗
i = Bi ·A) ∈ Zm×m

q }pi=1.
– {I∗i ∈ {0, 1}m×3m}pi=1. Each matrix is obtained by appending 2m zero −
columns to the identity matrix of order m.

– Ā
′∗

= [0 ∈ Zn×3m|0 ∈ Zn×3m|A1|0 ∈ Zn×2m| . . . |Aℓ|0 ∈ Zn×2m|0 ∈
Z2×3mℓ] ∈ Zn×(2+2ℓ)3m

q .

Then,

– For Sm, the prover P applies the Decomposition-Extension technique on zi,
and generates masking terms {rjz(i)}, where i ∈ [t] and j ∈ [k], such that the

verifier can check
Ā

∗ · (
∑k
j=1 βj · (z

j
i + rjz(i))) − ui = Ā

∗ · (
∑k
j=1 βj · r

j
z(i)) mod q, where

zji ∈ VALID(d∗).

– For Sr, P decomposes, extends zi, and generates masking terms {rjz(i)},
where i ∈ [p− t] and j ∈ [k], such that

Ā
∗ · (

∑k
j=1 βj · (z

j
i + rjz(i)))− ui = Ā

∗ · (
∑k
j=1 βj · r

j
z(i)) mod q.

– For S, P decomposes, extends both ti and ei, and generates masking terms
{rjt(i)}, where i ∈ [p] and j ∈ [k], and {rje(i)}, where i ∈ [p] and j ∈ [k]

respectively, such that
(B∗

i ·(
∑k
j=1 βj ·(t

j
i +rjt(i)))+I∗i ·(

∑k
j=1 βj ·(e

j
i +rje(i))))−bi = B∗

i ·(
∑k
j=1 βj ·

rjt(i)) + I∗i · (
∑k
j=1 βj · r

j
e(i)) mod q.

– Similarly, (A · (
∑k
j=1 βj · (t

j
i + rjt(i))) + Ā

′∗ · (
∑k
j=1 βj · (z

j
i + rjz(i))))− ui =

A · (
∑k
j=1 βj · r

j
t(i)) + Ā

′∗ · (
∑k
j=1 βj · r

j
z(i)) mod q.

Description of the Protocol

Commitments:

– Randomly sample masking terms {rjz(i) ←↩ Z
(2+2ℓ)3m
q , rjt(i) ←↩ Z

m
q , r

j
e(i) ←↩

Z3m
q }p·k for i ∈ [p], j ∈ [k] and rd∗ ←↩ Z2ℓ

q .

– Sample permutations {πj , ψj ←↩ S3m, ϕj ,←↩ Sm, φj ,←↩ S3m}p·kj=1, τ ←↩ S2ℓ,
and ξ ←↩ Sp.

The prover P generates commitments CMT = (c1, c2, c3), and sends to the
verifier V.

– c1 = COM(τ, ξ, {πj , ψj , ϕj , φj}p·kj=1, {Ā
∗ · (

∑k
j=1 βjr

j
z(i))}i∈[p],

{B∗
i · (

∑k
j=1 βj · r

j
t(i)) + I∗i (

∑k
j=1 βj · r

j
e(i))}i∈[p],

{A · (
∑k
j=1 βj · r

j
t(i)) + Ā′∗(

∑k
j=1 r

j
z)}i∈[p]).

– c2 = COM(τ(rd∗), {{Fπj
i ,ψ

j
i ,τ,ξ

(rjz(i))}
k
j=1}i∈[p], {{ϕji (r

j
t(i))}

k
j=1}i∈[p],

{{φji (r
j
e(i))}

k
j=1}i∈[p]).

– c3 = COM(τ(d∗ + rd∗), {{Fπj
i ,ψ

j
i ,τ,ξ

(zji + rjz(i))}
k
j=1}i∈[p],

{{ϕji (t
j
i + rjt(i))}

k
j=1}i∈[p], {{φji (e

j
i + rje(i))}

k
j=1}i∈[p]).
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Challenge: The verifier V randomly chooses a challenge CH ←↩ {1, 2, 3},
and sends it to P.

Response: Depending on the challenge CH, the prover P responses as below.

– CH = 1: Let vd∗ = τ(d∗) and wd∗ = τ(rd∗).
For i ∈ [p] let
{vjz(i) = Fπj

i ,ψ
j
i ,τ,ξ

(zji )}kj=1, {w
j
z(i) = Fπj

i ,ψ
j
i ,τ,ξ

(rjz(i))}
k
j=1,

{vjt(i) = ϕji (t
j
i )}kj=1, {w

j
t(i) = ϕji (r

j
t(i))}

k
j=1,

{vje(i) = φji (e
j
i )}kj=1, {w

j
e(i) = φji (r

j
e(i))}

k
j=1.

Output RSP1 = (vd∗ ,wd∗ , {{vjz(i),w
j
z(i),v

j
t(i),w

j
t(i),v

j
e(i),w

j
e(i)}

k
j=1}i∈[p]).

– CH = 2: Let yd∗ = d∗ + rd∗ .
For i ∈ [p] let {{yjz(i) = zji + rjz(i)}

k
j=1, {y

j
t(i) = tji + rjt(i)}

k
j=1,

{yje(i) = eji + rje(i)}
k
j=1}.

Output RSP2 = (τ, ξ, {πj , ψj , ϕj , φj}p·kj=1,yd∗ , {{y
j
z(i),y

j
t(i),y

j
e(i)}

k
j=1}i∈[p]).

– CH = 3:
Output RSP3 : (τ, ξ, {πj , ψj , ϕj , φj}p·kj=1, rd∗ , {{r

j
z(i), r

j
t(i), r

j
e(i)}

k
j=1}i∈[p]).

Verification: The verifier V checks the received response RSP as follows.

– CH = 1: Check that vd∗ ∈ B2ℓ, v
j
z(i) is valid with respect to vd∗ (that is

vjz(i) ∈ VALID(vd∗)) for at least t set of vectors and all j ∈ [k], vjt(i) ∈ Bm,

and vje(i) ∈ B3m. Then check that,

• c2 = COM(wd∗ , {{wj
z(i),w

j
t(i),w

j
e(i)}

k
j=1}i∈[p]),

• c3 = COM((vd∗ +wd∗), {{(vjz(i) +wj
z(i)), (v

j
t(i) +wj

t(i)),

(vje(i) +wj
e(i))}

k
j=1}i∈[p]).

– CH = 2: Check that

• c1 = COM(τ, ξ, {πj , ψj , ϕj , φj}p·kj=1, {Ā
∗ · (

∑k
j=1 βjy

j
z(i))− ui}i∈[p],

{B∗
i (
∑k
j=1 βj · y

j
t(i)) + I∗i (

∑k
j=1 βj · y

j
e(i))− bi}i∈[p]

{A · (
∑k
j=1 βj · y

j
t(i)) + Ā

′∗
(
∑k
j=1 y

j
z(i))− ui}i∈[p]),

• c3 = COM(τ(yd∗), {{Fπj
i ,ψ

j
i ,τ,ξ

(yjz(i))}
k
j=1}i∈[p],

{{ϕji (y
j
t(i)}

k
j=1}i∈[p], {{φji (y

j
e(i)}

k
j=1}i∈[p]).

– CH = 3: Check that

• c1 = COM(τ, ξ, {πj , ψj , ϕj , φj}p·kj=1, {Ā
∗ · (

∑k
j=1 βjr

j
z(i))}i∈[p],

{B∗
i (
∑k
j=1 βj · r

j
t(i)) + I∗i (

∑k
j=1 βj · r

j
e(i))}i∈[p],

{A · (
∑k
j=1 βj · r

j
t(i)) + Ā

′∗
(
∑k
j=1 r

j
z(i))}i∈[p]),

• c2 = COM(τ(rd∗), {{Fπj
i ,ψ

j
i ,τ,ξ

(rjz(i))}
k
j=1}i∈[p], {{ϕji (r

j
t(i))}

k
j=1}i∈[p],

{{φji (r
j
e(i))}

k
j=1}i∈[p].

V outputs 1 if and only if all the conditions hold, otherwise he outputs 0.
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3.3 Analysis of the Protocol

Theorem 1. Let COM be a statistically hiding and computationally binding
string commitment scheme. Then our protocol in Section 3.2 is a zero-knowledge
argument of knowledge for the relation R = (n, ℓ,m, t, p, k, β) with perfect com-
pleteness, soundness error 2/3, and communication cost (O(pℓm log β) log q.

Completeness and Communication Cost. If the prover P is honest and
follows the protocol, then the verifier V always outputs 1. Based on the previous
discussion, the proposed protocol has perfect completeness. Moreover, according
to [12], the commitment CMT has 3n log q bits. The verifier V sends two-bit
challenge CH ∈ {1, 2, 3}. The response RSP of P is a subset of the set of masking
terms and permutations which sums overall communication cost of upper bound
O(pℓm log β) log q.

We employ standard simulation and extraction techniques for Stern-like pro-
tocol [12,19,26] to prove the proposed protocol is a ZKAoK. The detailed proof
is given in the full version of this paper.

4 Proposed Attribute-Based VLR Group Signature
Scheme

Let λ be the security parameter, and N = 2ℓ = poly(λ) be the maximum number
of members in a group. Let integer n = poly(λ), the modulus q = O(ℓn2), and
the dimension m = ⌈2n log q⌉. Gaussian parameter σ = ω(logm). The infinity
norm bound for signature is β = Õ(

√
ℓn).

– Setup(1λ): On input the security parameter λ, set the parameters para as
above, and proceed as below.

1. Define the universal set of attributes Att = {u1,u2, . . . ,uu}, where ui ∈
Znq is uniform random and |Att| = u. Each attribute atti is associated
to a uniform random vector ui via a list attLst = {(atti,ui)}i∈{1,2,...,u}.

2. Select a hash function H : {0, 1}∗ → {1, 2, 3}t, to be modeled as a
random oracle, where t = ω(log n).

3. Output the public parameters PP = (para,Att, attLst,H).
– KeyGen(PP,N): The randomized algorithm KeyGen takes the public param-

eters PP and N = 2ℓ as the inputs and works as follows.

1. Generate the verification key A,A0,A1, . . . ,Aℓ ∈ Zn×mq and a trapdoor
TA ∈ Zm×m

q for the modified Boyen’s signature scheme as in [22].
2. For a member with an index d ∈ {0, 1, . . . , N −1} and a set of attributes
Sd = {ua1 ,ua2 , . . . ,uas} ⊆ Att (|Sd| = s), execute the following steps to
generate keys and tokens for him.
(a) Let d[1] . . . d[ℓ] ∈ {0, 1}ℓ be the binary representation of d.

(b) Compute Ad = [A | A0 +
∑ℓ
i=1 d[i] ·Ai] ∈ Zn×2m.

(c) For all j ∈ {1, 2, . . . , s} sample zd,aj ←↩ DZ2m,σ as the secret key for
an attribute uaj such that Ad · zd,aj = uaj and ∥zd,aj∥ ≤ β.



ZK Proof System for Fully Anonymous ABGS from Lattices with VLR 11

(d) For the other attributes u− s again sample fake credentials fd,fj ←↩
DZ2m,σ, such that Ad · fd,fj = uj and ∥fd,fj∥ ≰ β.

(e) Hereafter we represent all the secret keys (fake or real) for attributes
by zd,aj .

(f) Get A′
d = [0 ∈ Zn×mq | 0 ∈ Zn×mq +

∑ℓ
i=1 d[i] ·Ai] by replacing A

and A0 with zero matrices in the step (b).
(g) Compute vdj = A′

d · zdj ∈ Zn for all the attributes.
(h) Run SampleD(TA,A,uj−vdj , σ) to obtain tdj for all the attributes.
(i) Let the secret signing key of d be gsk[d] = {zdj ,uj}j∈[u] and the

revocation token be grt[d] = {utdj = A · tdj}j∈[u].

3. Output the group public key gpk = (A,A0,A1, . . . ,Aℓ,u1,u2, . . . ,uu),
the group manager’s secret key gmsk = TA, the members’ secret sign-
ing keys gsk= (gsk[0], gsk[1], . . . , gsk[N-1]), and members’ revocation
tokens grt = (grt[0], grt[1], . . . , grt[N-1]).

– Sign(PP, Γ,gpk,gsk[d],grt[d], Sd,M): On input the group public key gpk,
and a message M, the user d in a possession of a secret signing key gsk[d ],
a revocation token grt[d ], and a set of attributes Sd ⊆ Att, generates a
signature for a given threshold predicate Γ = (t, S = {u1,u2, . . . ,up} ⊆
Att), where 1 ≤ t ≤ |S| = p, as below. Here, Γ = (t, S) implies that the
condition (policy) Γ requires the signer to posses at least t attributes out of
the given set of attributes S, where the size of S is p.

1. Let Sm ⊆ (S ∩ Sd) ⊆ Att be the matching attributes that the user d
possesses, where |Sm| = t.

2. For the attributes S \ Sm the user d has fake credentials.
3. For all the attributes i ∈ p,

(a) Sample ρi
$← {0, 1}n, let Bi = G(Ā,ui,M, ρi) ∈ Zn×mq (G :

{1, 2, 3}∗ → Zn×mq ), where Ā = [A|A0| . . . |Aℓ].
(b) Compute bi = Bi ·(A ·tdi)+ei mod q (∥ei∥∞ ≤ β with overwhelm-

ing probability).

4. Generate a non-interactive zero-knowledge argument of knowledge Π
to prove that the prover d is indeed a valid group member possess-
ing at least t non-revoked attributes among S ⊆ Att. This is done
by repeating the protocol given in Section 3, t̄ = ω(log n) times
with public inputs (A,A0,A1, . . . ,Aℓ, {ui}i∈[p], {Bi}i∈[p], {bi}i∈[p])
and witness (d, {zi}i∈[p], {ti}i∈[p], {ei}i∈[p]). Then make it non-
interactive via the Fiat-Shamir heuristic as a triple Π =

({CMT(k̄)}t̄
k̄=1

,CH, {RSP(k̄)}t̄
k̄=1

), where CH = ({Ch(k̄)}t̄
k̄=1

) =

H(M,A, {Ai}ℓi=0, {ui}
p
i=1, {Bi}pi=1, {bi}

p
i=1, {CMT(k̄)}t̄

k̄=1
).

5. Output a signature Σ = (M, {ρi}pi=1, {bi}
p
i=1,Π).

– Verify(PP, Γ,gpk,RL,M, Σ): This deterministic algorithm takes as inputs
the group public key gpk = (A,A0,A1, . . . ,Aℓ,u1,u2, . . . ,uu), a threshold
predicate Γ = (t, S = {u1,u2, . . . ,up} ⊆ Att), a signature Σ on a message
M, and a list of revocation tokens RL = {uti = (uti1 ,u

t
i2
, . . . ,utia)}i≤N ⊆ grt,

where a ≤ u, and verifies the signature as below.
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1. Pares the signature Σ as (M, {ρi}pi=1, {bi}
p
i=1,Π).

2. Get {Bi = G(Ā,ui,M, ρi) ∈ Zn×mq }i∈[p].

3. Pares Π as ({CMT(k̄)}t̄
k̄=1

, {Ch(k̄)}t̄
k̄=1

, {RSP(k̄)}t̄
k̄=1

).
4. Return 0, if (Ch1, . . . Cht̄) ̸=

H(M,A, {Ai}ℓi=0, {ui}
p
i=1, {Bi}pi=1, {bi}

p
i=1, {CMT(k̄)}t̄

k̄=1
).

5. For i = 0 to t̄, run the verification steps of the protocol given in Section 3
with the public inputs (A,A0,A1, . . . ,Aℓ, {ui}i∈[p], {Bi}i∈[p], {bi}i∈[p])

to check the validity of RSP(k̄) with respect to CMT(k̄) and Ch(k̄). If
any of the conditions does not hold, then return 0.

6. For each utix in the given revocation list RL, where x ≤ u and i ≤ N

compute e
′

i = bi−Bi ·utix mod q to check whether there exists an index

i such that ∥e′

i∥∞ ≤ β. If so return 0.
7. Return 1.

– Revoke(PP,gpk,gmsk,RL, d, Sr): On input gpk, the revocation list RL, the
id d of the effecting member, and his revoking attribute set Sr = {utd1 =
A · td1 ,utd2 = A · td2 , . . . ,utdr = A · tdr}, where r ≤ u, the group manager
with gmsk, do the following steps.

1. If utd ∈ RL, then utd = utd ∪ Sr, else RL = RL ∪ utd = Sr.
2. Return RL.

5 Security Analysis of the Proposed Scheme

This paper provides a new ABGS scheme with VLR from lattices to achieve
full-anonymity. The security of the scheme is proven in the random-oracle model
under the hardness assumption of SIVP problem.

Theorem 2. The proposed ABGS-VLR is correct with overwhelming probabil-
ity. If the underlying non-interactive zero-knowledge (NIZK) protocol is sim-
ulation sound and zero-knowledge, then the proposed scheme is fully anony-
mous. Moreover, under the hardness of the SIVPO(λ) problem our scheme is
fully-traceable.

In this paper we only prove the anonymity of the scheme. Proof of traceability
of the scheme is provided in the full version of this paper.

Anonymity

In the anonymity game between a challenger and an adversary, first, the chal-
lenger generates keys and gives the public keys and all the users’ secret signing
keys to the adversary. The adversary can query signer’s index of any signature.
Later, he sends two challenging indices to the challenger. The challenger selects a
bit randomly from the two indices, then generates and sends back a challenging
signature. The adversary wins if he can guess the index which is used to generate
the challenging signature without querying.
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We prove that the proposed scheme is fully anonymous using the following
two games between an adversary A and a challenger C.

Game 1. In this game, the challenger C sets everything honestly. The adver-
sary is given the group public key and the secret signing keys of all the users. The
challenger answers all the opening queries that the adversary makes. Finally, the
challenger produces a signature Σ∗ with the true identities (i0, i1,S0,S1, Γ

∗,M∗)
that the adversary sent, and forwards Σ∗ to the adversary.

Game 2. In this game, instead of generating an honest non-interactive zero
knowledge argument Π, the challenger simulates the argument for the challenge
signature Σ∗. Thus, Game 2 is the same as Game 1 except the simulated Π∗.
Since the underlying argument system is statistically zero-knowledge, the distri-
bution of simulated Π∗ is statistically close to that of the legitimate Π. Thus
Game 1 and Game 2 are indistinguishable.

Indistinguishability of above two games proves that our proposed scheme is
fully anonymous.

6 Conclusion

In this paper, we considered a situation where the tokens of the attributes are
generated independently to the secret signing keys of the attributes to achieve
full anonymity. We presented a zero-knowledge protocol that enables provers to
convince the validity of them, their attributes, and the tokens in such scenarios.
Moreover, we presented a new ABGS scheme with VLR from lattices to achieve
full anonymity.

References

1. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: For-
mal definitions, simplified requirements, and a construction based on general as-
sumptions. In: EUROCRYPT 2003, LNCS. vol. 2656, pp. 614–629. Springer Berlin
Heidelberg (2003)

2. Chaum, D., Van Heyst, E.: Group signatures. In: EUROCRYPT 1991, LNCS.
vol. 547, pp. 257–265. Springer Berlin Heidelberg (1991)

3. El Bansarkhani, R., El Kaafarani, A.: Post-quantum attribute-based signatures
from lattice assumptions. IACR Cryptology ePrint Archive 2016, 823 (2016)

4. El Kaafarani, A., Chen, L., Ghadafi, E., Davenport, J.: Attribute-based signatures
with user-controlled linkability. In: Cryptology and Network Security. CANS 2014.
vol. 8813, pp. 256–269. Springer, Cham (2014)

5. El Kaafarani, A., Ghadafi, E., Khader, D.: Decentralized traceable attribute-based
signatures. In: CT-RSA 2014. vol. 8366, pp. 327–348. Springer, Cham (2014)

6. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: CRYPTO 1986. vol. 263, pp. 186–194. Springer (1986)
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