Papers

2018

Rapid bioinspired mineralization using cell membrane nanofragments and alkaline milieu

JOURNAL OF MATERIALS CHEMISTRY B
  • Emilio Satoshi Hara
  • ,
  • Masahiro Okada
  • ,
  • Takuo Kuboki
  • ,
  • Takayoshi Nakano
  • ,
  • Takuya Matsumoto

Volume
6
Number
38
First page
6153
Last page
6161
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1039/cBtb01544a
Publisher
ROYAL SOC CHEMISTRY

Bone is a sophisticated organic-inorganic hybrid material, whose formation involves a complex spatio-temporal sequence of events regulated by the cells. A deeper understanding of the mechanisms behind bone mineralization at different size scales, and using a multidisciplinary approach, may uncover novel pathways for the design and fabrication of functional bone tissue in vitro. The objectives of this study were first to investigate the environmental factors that prime initial mineralization using the secondary ossification center as an in vivo model, and then to apply the obtained knowledge for rapid in vitro synthesis of bone-like tissue. First, the direct and robust measurement of pH showed that femur epiphysis is alkaline (pH 8.5) at the initial mineral stage at post-natal day 6. We showed that the alkaline milieu is decisive not only for alkaline phosphatase activity, which precedes mineral formation at P6, but also for determining initial mineral precipitation and spherical morphology. Next, engineering approaches were used to synthesize bone-like tissue based on alkaline milieu and artificial chondrocyte membrane nanofragments, previously shown to be the nucleation site for mineral formation. Interestingly, mineralization using artificial cell membrane nanofragments was achieved in just 1 day. Finally, ex vivo culture of femur epiphysis in alkaline pH strongly induced chondrocyte burst, which was previously shown to be the origin of chondrocyte membrane nanofragments, and also enhanced mineral formation. Taken together, these findings not only shed more light on the microenvironmental conditions that prime initial bone formation in vivo, but they also show that alkaline milieu can be used as an important factor for enhancing methods for in vitro synthesis of bone tissue.

Link information
DOI
https://doi.org/10.1039/cBtb01544a
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000449697700013&DestApp=WOS_CPL
ID information
  • DOI : 10.1039/cBtb01544a
  • ISSN : 2050-750X
  • eISSN : 2050-7518
  • Web of Science ID : WOS:000449697700013

Export
BibTeX RIS