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Abstract
Objective This study explored the feasibility of using deep learning for profiling of panoramic radiographs.
Study design Panoramic radiographs of 1000 patients were used. Patients were categorized using seven dental or physical 
characteristics: age, gender, mixed or permanent dentition, number of presenting teeth, impacted wisdom tooth status, implant 
status, and prosthetic treatment status. A Neural Network Console (Sony Network Communications Inc., Tokyo, Japan) deep 
learning system and the VGG-Net deep convolutional neural network were used for classification.
Results Dentition and prosthetic treatment status exhibited classification accuracies of 93.5% and 90.5%, respectively. Tooth 
number and implant status both exhibited 89.5% classification accuracy; impacted wisdom tooth status exhibited 69.0% clas-
sification accuracy. Age and gender exhibited classification accuracies of 56.0% and 75.5%, respectively.
Conclusion Our proposed preliminary profiling method may be useful for preliminary interpretation of panoramic images 
and preprocessing before the application of additional artificial intelligence techniques.

Keywords Deep learning · Preliminary profiling · Panoramic image · Artificial intelligence (AI) · Dental radiology · Oral 
health

Abbreviation
AI  Artificial intelligence

Introduction

Among various artificial intelligence (AI) technologies, deep 
learning has demonstrated robust image detection perfor-
mance. Therefore, deep learning-assisted detection/diagno-
sis is receiving considerable attention [1, 2].

In the field of dentistry, panoramic radiography is 
regarded as the ideal modality to rapidly screen patient den-
tition. AI software may thus be useful for scanning pano-
ramic images and generating accurate dental diagnoses. 
Several AI software systems have been proposed to deter-
mine dental status using panoramic, periapical, and dental 
cone-beam CT images [3–9].

In previous studies regarding the deep-learning analysis 
for the panoramic radiograph, the tooth region detection 
was first performed. Famous convolutional neural networks 
such as DetectNet and GoogLeNet was used to perform so-
called bounding-box type region detection [10, 11]. These 
systems have demonstrated robust diagnostic performance 
to detect and/or evaluate various dental conditions. Then 
classification of each tooth by the type of tooth (tooth num-
ber) and/or the dental treatment status was performed using 
the ResNet, AlexNet, VGG-Net, and etc. [12, 13]. However, 
forementioned deep learning approach has not yet achieved 
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accurate identification of each tooth [6]. It may be due to 
the huge morphological variety of panoramic radiography. 
The appearance of the panoramic radiograph changes greatly 
depending on the person's subject’s generation and the con-
dition of the maxillofacial region. This makes to be difficult 
for AI to perform accurate image region detection and clas-
sification. Therefore, it may be reasonable to classify the 
entire panoramic image before extracting the tooth region 
to perform region detection.

Regarding the clinical aspect, a preliminary interpretation 
and classification system for panoramic radiograph will be 
useful for dentists to perform assessment of patient's dental 
status. This system would allow patient profiling from pan-
oramic images. For example, it could distinguish between 
healthy dentition and dentition that contains multiple pros-
theses and/or missing teeth. Additionally, it could distin-
guish between permanent dentition and mixed dentition. The 
system might enable dentists to provide concise explanations 
for patients regarding the need for dental treatment.

This study was performed to explore the usefulness of 
deep learning image classification for preliminary interpreta-
tion and classification of panoramic images.

Materials and methods

An image database containing panoramic radiographs of 
1000 patients was established with approval from the Asahi 
University School of Dentistry ethics committee (approval 
no. 31040). And this study was conducted according to the 

principles expressed in the Declaration of Helsinki. Pano-
ramic radiography examinations were performed in Asahi 
University dental hospital using a panoramic radiography 
machine (Veraview-epocs, Morita Inc., Kyoto, Japan) and 
a photostimulable storage phosphor digital radiograph sys-
tem (Prima T2, Fuji Film Co., Kanagawa, Japan). Panoramic 
images were stored in DICOM format (3,000 × 1,500 pixels). 
The database consisted of 445 male patients and 555 female 
patients with various dental diseases; patients were excluded 
if they had extensive cysts, tumors, and/or fractures.

Patients were categorized using the dental and physical 
characteristics described in Table 1. Physical characteris-
tics comprised gender and age groups. Dental characteristics 
comprised mixed and permanent stages of dentition, as well 
as the following statuses: impacted wisdom tooth, implant, 
and prosthetic. Patients were also stratified according to the 
number of presenting teeth (≤ 19 and ≥ 20). Figure 1 shows 
examples of patient panoramic images and possible clas-
sification categories.

We used a Neural Network Console ver. 1.5.0 for Win-
dows (Sony Network Communications Inc., Tokyo, Japan) 
deep learning system, along with the VGG-Net deep convo-
lutional neural network. Figure 2 shows the VGG-Net archi-
tecture used in this study. We trained networks to perform 
classification using the above six categories. We randomly 
assigned images at a 7:1:2 ratio into training, validation, 
and test datasets. The training process was performed for 30 
epochs, using a batch size of 50 and a convolutional neural 
network of 19 layers. We trained the AI to recognize the 
entire area of a panoramic image as single region of interest. 

Table 1  Panoramic radiograph 
classification categories

Classification category Group Num-
ber of 
patients

Physical characteristics Gender Male 445
Female 555

Age (years)  ≤ 15 184
16–29 189
30–49 220
50–69 272
 ≥ 70 135

Dental characteristics Dentition Mixed 158
Permanent 842

Impacted wisdom tooth status Present 505
Absent 495

Number of presenting teeth  ≤ 19 113
 ≥ 20 887

Implant status Present 142
Absent 858

Prosthetic treatment status Present 752
Absent 248
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Therefore, each panoramic image was resized to a resolution 
of 474 × 234 pixels (36 pixels per inch).

Results

Figure 3 shows the learning curves of the seven classifica-
tion categories. The shapes of the learning curves indicated 
that smooth progression with respect to classifying perma-
nent or mixed dentition, prosthetic treatment status, number 
of teeth (≥ 20 or ≤ 19), and implant status. The values of the 
corresponding cost (loss) functions, as well as the rates of 

validation and training error, nearly reached zero during the 
learning period. In contrast, gender and impacted wisdom 
tooth status showed slightly higher cost values and error 
rates. The age group (five categories) demonstrated a higher 
error value during the learning period, compared with the 
other characteristics.

Dentition and prosthetic treatment status exhibited classi-
fication accuracies of 93.5% and 90.5%, respectively. Tooth 
number and implant status both exhibited 89.5% classifi-
cation accuracy; impacted wisdom tooth status exhibited 
69.0% classification accuracy. Age and gender exhibited 
classification accuracies of 56.0% and 75.5%, respectively. 

Fig. 1  Panoramic images and applicable classification categories. Preliminary dental profiles of patients could be extracted from the test images
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Table 2 shows the accuracy, sensitivity, and specificity val-
ues for all characteristics.

Discussion

Panoramic radiography is the most frequently used imaging 
modality in dental practice. Many dental offices currently 
use a digital panoramic radiography system and millions 
of panoramic images are acquired annually. The regions in 
such images include the teeth and jaws, as well as the facial 
and cervical regions. It is thus reasonable for panoramic 
radiographs to be used in the development of an automatic 
diagnostic system [14]. Several deep-learning AI techniques 
have been proposed for detection of cystic lesions in the jaw 
[15, 16], impacted teeth [17, 18], fractures [19], and maxil-
lary sinusitis [20, 21]. Additionally, software that perform 
tooth detection and numbering in panoramic radiographs 
have been implemented in dental practice [3–6]. Automation 

of X-ray image diagnoses will improve diagnostic accuracy 
and reduce burdens on dentists.

Most of the existing techniques require region detection 
and/or image segmentation to define the appropriate area of 
interest before precise detection/diagnosis can be performed. 
However, it is difficult for AI systems to accurately perform 
both segmentation and detection in panoramic radiograph. 
For example, although existing tooth detection and num-
bering techniques have demonstrated accuracy of > 95% per 
tooth, this accuracy decreases if the area of interest focuses 
on the entire dentition in a patient’s mouth. The accuracy 
may be improved if a panoramic image can be preliminar-
ily classified to several groups, prior to implementation in 
training a specific segmentation and detection AI network. 
Therefore, our proposed preliminary profiling method may 
be useful for preprocessing before application of the seg-
mentation and/or region detection technique. In addition, 
the AI profiling we propose may be useful for post-mortem 
personal identification in the event of a natural disaster. [22]

Fig. 2  VGG-Net architecture used in this study
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Fig. 3  Learning curves of seven classification categories. In the four categories in the upper row, errors and costs converge to nearly zero as 
training progresses. In the three categories in the middle and lower rows, no distinct error or cost convergences were observed
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Our results revealed that only some physical and dental 
characteristics (i.e., categories) were suitable for AI classifi-
cation. Four categories exhibited high classification perfor-
mance: mixed or permanent dentition, number of presenting 
teeth, implant status, and prosthetic treatment status. Nota-
bly, these categories constitute distinctive features that can 
be clearly identified by the human eye. Implants and dental 
prostheses materials exhibit visibly greater image contrast, 
compared with other hard tissue. However, impacted wisdom 
tooth status did not exhibit high classification accuracy, pre-
sumably because impacted wisdom teeth do not demonstrate 
visibly greater image contrast compared with surrounding 
hard tissue structures. Gender exhibited higher classification 
accuracy than expected, possibly because of gender differ-
ences in jaw bone size. However, patient age group could not 
be clearly identified, even by experienced radiologists. Previ-
ous studies have reported that it is difficult for deep learn-
ing algorithms to accurately detect low contrast anatomical 
structures [23]. We suspect that classification of panoramic 
images into the categories of children, young adults, and 
older adults may be better than classification according to 
specific age groups. We plan to further investigate possible 
revisions of existing classification criteria. Additionally, AI 
diagnostic performance could be improved by training with 
greater numbers of panoramic images, acquired using an 
array of panoramic imaging systems to ensure AI exposure 
to differences among imaging systems.

In this study, we used the VGG-Net deep convolutional 
neural network. Although various deep learning networks 
(e.g., LeNet, AlexNet, ResNet, and VGG-Net) have been 
used to classify images, we previously demonstrated similar 
classification performance among these networks [24]. In 
this study, we used the Neural Network Console interac-
tive rapid-prototyping tool, which has been validated in the 
construction and implementation of several deep learning 
networks [25]. This deep learning tool enabled the applica-
tion of an advanced AI network without complex coding 
requirements. Moreover, the Neural Network Console sys-
tem contains an automatic adjustment function that supports 
network architecture.

We plan to use our panoramic image profiling system 
for automatic definition and evaluation of specific dental 

diseases (e.g., dental caries, periodontitis, and periapical 
lesions). Additionally, the system might be appropriate for 
application in forensic dentistry: [26] the identification of 
deceased individuals after traumatic death via compari-
son with panoramic images of dental profiles previously 
obtained in regional dental clinics.

In conclusion, this study investigated the use of deep 
learning for preliminary profiling of panoramic images. 
Using the VGG-Net deep convolutional neural network, high 
classification accuracies were achieved in terms of distin-
guishing between mixed or permanent dentition, stratifying 
according to the number of presenting teeth, and determin-
ing the implant and prosthetic treatment statuses.
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