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ABSTRACT 

Success of breast cancer treatment is subject to various factors, including cancer stage and cancer grade. The best treatment 
is selected based on the characteristic of cancer. It is desirable to predict the cancer characteristics and prognostic factors 
accurately and promptly by diagnostic imaging. The purpose of the study is to investigate the use of multimodality 
diagnostic images in predicting breast cancer subtypes to assist diagnosis and treatment planning. In this study, we classify 
lesions into molecular subtypes and simultaneously predict histological grades and invasiveness of the cancers by 
mammography and breast ultrasound images. Models with different architectures including single input and multi-input 
layers with single head and multiple head models are compared. The results indicate that use of multimodality images is 
more predictive than using single modalities. The automatic subtype classification using multimodality images may 
support a prompt treatment planning and proper patient care. 

 1. PURPOSE 
Breast cancer is the most common cancer in women globally [1]. When the cancer is found early, treatment can be highly 
effective. For successful survival, the best treatment is selected based on the cancer characteristics, including pathologic 
types, histological grade, and intrinsic subtypes [2-4]. The use of hormonal therapy, chemotherapy, and targeted biological 
therapy can be determined by the intrinsic subtypes. It may be useful if cancer characteristics can be determined promptly 
using diagnostic imaging to assist radiologist in tissue sampling and treatment planning. 

Several studies have investigated the correlation between molecular subtypes and diagnostic image findings on 
mammography, ultrasonography, and breast MRI [5-7]. Li et al. [8] proposed quantitative method to classify ER, PR, and 
HER2 status using radiomic features on MRI and linear discriminant analysis. Zhu et al. [9] investigated the use of deep 
learning to classify tumors between luminal-A type and others. They reported the use of deep features obtained by the 
pretrained model and a support vector machine (SVM) provided the better performance than those by end-to-end deep 
learning models. Ha et al. [10] proposed a subtype prediction method using convolutional neural network (CNN) using 
MRI data and obtained 70% accuracy on 40 test cases. Zhang et al. [11] compared the use of CNN and a recurrent network 
(LSTM) for subtype classification on MRI obtained at two centers. Son et al. [12] proposed a machine learning method 
for prediction of molecular subtypes using radiomic features determined in breast tomosynthesis images. Various features 
including shape and texture features were extracted based on the manual contours of lesions, and classification between 
luminal, HER2 and triple-negative types was performed using elastic-net. Ueda et al. [13] investigated the deep learning 
models in classification of receptor expression status using mammography. 

Our purpose in the study is to investigate the image analysis methods to predict molecular subtypes, histological grades, 
and invasiveness of cancers using mammography and ultrasound images. Subtype classification on diagnostic imaging is 
a difficult task. Since radiologists generally make diagnostic decisions using multimodality images, which compensate 
each other, they may be helpful in predicting molecular subtypes. In addition, multitask classification may improve single 
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task classification of subtypes. We compared single modality models and multimodality models with single and double 
input layers. 

2. METHODS  
2.1 Database 

Digital mammograms and breast ultrasound images used in this study were obtained at Nagoya Medical Center. This study 
was approved by the institutional review board of Nagoya Medical Center, and informed consent was waived with 
opportunities for an opt-out. Images were obtained as part of routine screening or diagnostic exams. All the lesions were 
diagnosed cancer based on biopsy or surgery. Only one lesion per patient was used in this study. The study cases include 
346 lesions consisted of 112 luminal-A, 159 luminal-B, 32 HER2, and 43 triple-negative types. The breakdowns of 
histological grades and invasive or non-invasive cancers are listed in Table 1. Table 2 shows the major image findings of 
these lesions on mammography. The lesions with no findings include those found by other modalities such as breast 
tomosynthesis and ultrasound images. 

 

Table 1. Cancer characteristics 

Intrinsic subtype Luminal-A 112 

 Luminal-B 159 

 HER2 32 

 Triple-negative 43 

Histological grade Low 71 

 Intermediate 149 

 High 126 

Invasiveness Invasive cancer 292 

 Non-invasive cancer 54 

 

Table 2. Major image findings on mammography 

 Luminal-A Luminal-B HER2 Triple-negative 

Mass 51 70 12 25 

Microcalcifications 14 28 11 4 

Architectural distortion 14 24 1 4 

Focal asymmetric density 20 17 6 7 

No findings 13 20 2 3 

 

Using rough outlines of lesions provided by a radiologist, a square region of interest was cropped from mammograms. For 
ultrasound images, regions outside the field of view were trimmed. Each patch was resized to 300 x 300 pixels. For 
ultrasound images, aspect ratio was kept by zero padding. 

2.2 Proposed model 

We compared models with single modality and multimodality inputs: (1) mammography input, (2) ultrasonography input, 
(3) mammography and ultrasonography placed side by side as one image, and (4) two modality images separately to two 
input layers. For each input type, single head model with an output layer of 9 units corresponding to 4 subtypes, 3 
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histological grades, and 2 pathologic types and multiple head model with three output layers were considered. Figure 1 
shows the model architectures. EfficientNetB3 [14] was used as the base model. In the single head model, probabilities for 
intrinsic subtypes, histological grades, and invasive or noninvasive cancers are determined by a single output layer with 
sigmoid activation function and binary cross entropy loss. In the multiple head model, subtypes, grades, and pathology 
types were determined by three softmax layers with categorical cross entropy loss. The number of units in dense/full 
connection (FC) layer was 128. The optimizer was Adam with a learning rate of 0.001. The models were trained up to 30 
epochs. 

We also compared the models trained from the scratch, those pretrained with the mass dataset for classification of benign 
and malignant lesions, and those pretrained with the imagenet. Classification performance was evaluated by 4-fold cross 
validation with a stratified randomization to balance the classes. In each round, training set was further split into training 
(80%) and validation (20%) sets, and the model at the epoch that provided the minimum loss for validation set was applied 
to the test set. Because of the small and unbalanced dataset, oversampling was applied to training set for balancing the 
classes by random data augmentation. Random shift, scaling, and horizontal flip were applied but image rotation was not 
used because the data included the ultrasound images. 

 

 
Fig 1. proposed models 

2.3 Evaluation 

Average (macro) F1 score was determined for comparison of the models. Since the subtypes and invasiveness in our dataset 
are extremely imbalance, predicting all samples as liminal-A or luminal-B types and as invasive cancer may result in the 
best accuracies. As in previous studies, performance for 2-class classification as luminal-A versus others, luminal-B versus 
others, HER2 versus others, and triple-negative versus others are also determined by collapsing 4 classes to 2 classes. 
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3. RESULTS  
The best average F1 scores and the recall rates and accuracies of the corresponding models were 0.32, 0.32, and 0.41 for 
4 subtype classification, 0.43, 0.43, and 0.47 for histological grade classification, and 0.59, 0.60, and 0.78 for invasiveness 
classifications. Table 3 summarizes the results. For all 3 classifications, the two input layer with one head model obtained 
the best results, although the differences are small in some cases. In general, F1 scores were higher by one-head models 
than by multi-head models. The best F1 scores using 3 separate models for subtype, grades, and invasiveness classification 
were also shown in Table 3. The MG model and US model, and 2 input model provided the best score, respectively, for 
those three. The higher F1 scores were obtained for 3 classifications using multi-task models. 

The best F1 scores and the corresponding accuracies for luminal-A versus others, luminal-B versus others, HER2 versus 
others, and triple-negative versus others were shown in Table 4. For luminal-A versus others, 2 input model provided the 
best F1 score, whereas MG model obtained the best scores for other three classifications. 

Table 5 shows the F1 scores for the model trained from scratch and those using pretrained models. When using the model 
trained from the scratch and model pretrained with another mass dataset, performances were lower than one pretrained 
with imagenet dataset. For pretraining with the mass dataset for classification of benign and malignant lesions, 162 benign 
and 133 malignant images obtained at the same institution but during different time period were used. 

 

Table 3. Classification results for different model architectures 

Model Subtype Histological grade Invasiveness 

 F1 score Accuracy F1 score Accuracy F1 score Accuracy 

(1) MG input One head  0.319 0.370 0.393 0.442 0.570 0.772 

 Multi-head  0.268 0.329 0.319 0.408 0.491 0.815 

(2) US input One head  0.319 0.387 0.366 0.384 0.542 0.751 

 Multi-head  0.242 0.376 0.372 0.399 0.575 0.763 

(3) Combined 
image input 

One head  0.287 0.396 0.424 0.460 0.569 0.754 

Multi-head  0.236 0.321 0.356 0.471 0.526 0.798 

(4) Two 
inputs 

One head  0.321 0.410 0.431 0.465 0.590 0.775 

Multi-head  0.260 0.353 0.344 0.442 0.508 0.653 

Separate models 0.280 0.384 0.368 0.401 0.513 0.690 

 

Table 4. Classification results 2-class classification on subtypes 

Luminal A vs others Luminal-B vs others HER2 vs others TN versus others 

F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy 

0.604 0.645 0.536 0.540 0.564 0.824 0.579 0.801 

 

4. DISCUSSION  
In this study, we attempted to classify breast cancer subtypes using mammography and breast ultrasound images. 
Classification accuracy was not very high partly due to the fact that it is a difficult task and the dataset is small and 
imbalance. In addition, the dataset consists of various kind of lesions including masses, microcalcifications, distortions, 
and those that were originally had no findings on mammograms but found on other modalities. Overall, use of both 
modality images was effective than using mammography or ultrasound images alone. 
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Table 5. Classification results for models without and with pretraining 

Model Subtype Histological grade Invasiveness 

  F1 score Accuracy F1 score Accuracy F1 score Accuracy 

No pretraining 0.236 0.379 0.308 0.361 0.529 0.818 

Pretrained with mass data 0.305 0.428 0.329 0.361 0.533 0.841 

Pretrained with imagenet 0.321 0.410 0.431 0.465 0.590 0.775 

 

The classification performances were slightly improved by training one model for multitask classification than training 
three separate models. In general, the performances of one-head models were higher than those of multi-head model. The 
result could be due to the way over-sampling was performed and/or sigmoid activation function. The results require further 
analysis. 

Son et al. [12] proposed a machine learning method to predict molecular subtypes using breast tomosynthesis images. They 
obtained accuracies of 0.803, 0.704, and 0.507 for classification of triple-negative versus non-triple-negative cases, HER2 
versus non-HER2 cases, and luminal versus non-luminal cases, respectively. In terms of accuracy, the results are 
comparable or slightly better in this study. Their study, however, requires manual outlines of the lesions for determination 
of hand-crafted features, and the number of validation cases are small (12, 9, and 50 for triple-negative, HER2, and luminal 
samples). Ueda et al. [13] investigated a deep learning-based method to classify receptor status on mammograms. For 225 
test cases, the accuracies for estrogen receptor, progesterone receptor, and HER2 status were 0.63, 0.60, and 0.64, 
respectively. They obtained the best result by ensemble of different models, such as VGG and inception. Such method may 
be useful in our study. 

In this study, imagenet-pretrained models provided the better performance than model trained from scratch or model 
pretrained by the mass dataset. Although different task (benign and malignant classification), we conjectured that 
pretraining with mammographic cases would be effective. However, use of the imagenet dataset was more effective 
probably because the number of pretraining cases was small. Using the model without pretraining, the output tends to be 
more biased towards majority cases, whereas outputs were more balanced using the imagenet-pretrained model. 

Although performance needs to be improved, this study showed the potential for classifying molecular subtypes, 
histological grade, and invasiveness of cancer on mammography and breast ultrasound images. Further study is needed 
with a larger dataset to design useful models for assisting radiologists in breast cancer diagnosis and treatment planning. 
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