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Abstract: Interstitial pneumonia of uncertain cause is referred to as idiopathic interstitial pneumo-

nia (IIP). Among the various types of IIPs, the prognosis of cases of idiopathic pulmonary fibrosis 

(IPF) is extremely poor, and accurate differentiation between IPF and non-IPF pneumonia is critical. 

In this study, we consider deep learning (DL) methods owing to their excellent image classification 

capabilities. Although DL models require large quantities of training data, collecting a large number 

of pathological specimens is difficult for rare diseases. In this study, we propose an end-to-end 

scheme to automatically classify IIPs using a convolutional neural network (CNN) model. To com-

pensate for the lack of data on rare diseases, we introduce a two-step training method to generate 

pathological images of IIPs using a generative adversarial network (GAN). Tissue specimens from 

24 patients with IIPs were scanned using a whole slide scanner, and the resulting images were di-

vided into patch images with a size of 224 × 224 pixels. A progressive growth GAN (PGGAN) model 

was trained using 23,142 IPF images and 7817 non-IPF images to generate 10,000 images for each of 

the two categories. The images generated by the PGGAN were used along with real images to train 

the CNN model. An evaluation of the images generated by the PGGAN showed that cells and their 

locations were well-expressed. We also obtained the best classification performance with a detection 

sensitivity of 97.2% and a specificity of 69.4% for IPF using DenseNet. The classification perfor-

mance was also improved by using PGGAN-generated images. These results indicate that the pro-

posed method may be considered effective for the diagnosis of IPF. 

Keywords: idiopathic interstitial pneumonias; classification; convolutional neural network;  

generative adversarial networks 

 

1. Introduction 

1.1. Background 

Interstitial pneumonia is an inflammation that occurs in the interstitium between al-

veoli. There are many types of interstitial pneumonia, including interstitial pneumonia of 

unknown cause, which is referred to as idiopathic interstitial pneumonia (IIP). IIPs in-

clude a variety of pathological forms, with idiopathic pulmonary fibrosis (IPF) having the 

poorest prognosis [1]. Differentiation of IPF is important because the associated treatment 

methods differ significantly from those of other IIPs (non-IPF). 

In the diagnosis of IIPs, a high-resolution chest CT scan is used to diagnose the extent 

and type of inflammation. If differentiation is difficult on a CT examination, pathological 

examination is performed using lung biopsy. Recently, whole specimens have been dig-

itized using whole slide scanners, and digital images have become more common for 
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diagnosis [2]. However, the diagnosis of IPF using pathological imaging requires exten-

sive experience and very few pathologists are capable of performing the task. Therefore, 

we aimed to develop assistive technology to diagnose IPF accurately in this study. 

Artificial intelligence (AI) has evolved markedly with the emergence of deep learning 

(DL) in the early 2010s and has shown superior capabilities in image recognition [3,4]. 

Therefore, in this study, we focused on the classification of IPF and non-IPF patients using 

DL. 

1.2. Related Works 

Various DL technologies have been proposed for lung diseases [5–10]. We developed 

a method to automatically detect lung nodules in CT images using a convolutional neural 

network (CNN), which is a DL technique [5]. For pathological images, an automated 

method for classifying histological types of lung cancer cells by CNN and a method for 

differentiating between benign and malignant cells have also been proposed [6–8]. Re-

garding pneumonia, many studies have considered the automatic detection of COVID-19 

pneumonia [9] and predicted the severity of the disease [10]. In a study using non-lung 

histopathology specimens, Shi et al. proposed a method for the automatic detection of 

gastric cancer regions in images of gastric histopathology specimens using a CNN de-

coder for feature extraction and an attention mechanism [11]. The evaluation using two 

datasets showed that it has a satisfactory detection agreement. Li et al. also proposed a 

classification method for cholangiocarcinoma by introducing a generator and a discrimi-

nator with a transformer [12]. 

To detect and classify IIPs, Takeuchi et al. studied the automatic extraction of regions 

of IIPs from CT images and their classification as IPF or non-IPF, and achieved a differen-

tiation accuracy of 75.7% [13].  

Uegami et al. used pathological images to automatically classify IIPs by extracting 

features from finely cropped images using self-supervised learning [14]. The features were 

clustered, and pathologists manually merged clusters with the same pathological features. 

On this basis, they developed a method to classify IIPs using deep learning, which 

achieved an AUC of 0.92. Their study demonstrated the feasibility of analyzing patholog-

ical patterns of IIPs using deep learning. In contrast, the model’s ability to automatically 

classify IIPs without manual clustering by pathologists exhibited an AUC of 0.65. To the 

best of our knowledge, no other works in the relevant literature have considered this ap-

proach, and no existing methods can automatically classify IIPs with sufficient accuracy.  

Thus, very few studies have classified pathological images of IIPs, and automated 

classification remains challenging. IIP is a rare disease, and so collecting a large number 

of biopsy specimens is difficult. Despite the small number of cases, the patterns that 

emerge in tissue specimens from IIPs are diverse. Therefore, methods that can produce 

satisfactory results using data on a small number of cases are needed. 

In this study, we consider data augmentation via a generative adversarial network 

(GAN) model, which can generate a large number of images that resemble patterns 

learned during an adversarial training process. These methods attracted considerable at-

tention as a groundbreaking approach when they were originally developed. In prior 

works, we used GAN models to classify lesions. For example, we proposed a conditional 

info-GAN designed to generate CT images of lung nodules with various shapes, and 

showed that the generated images can be used to improve the accuracy of lung cancer 

histology classification [15]. In addition, we automatically generated lung cell images us-

ing progressive growth GANs, which can generate high-resolution images, and applied 

the generated outputs to classify benign and malignant lung cells. This method achieved 

results better than those obtained without using the generated images [16]. In addition, a 

method to generate MR images of the head similar to those of stroke patients from MR 

images of healthy patients using a CycleGAN model was proposed. This approach was 

then used to improve the accuracy of automated detection of cerebral infarction using the 

transformed images [17]. 
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1.3. Objective and Contributions 

Based on the background and challenges described above, we propose a method to 

automatically classify pathological specimens of IIPs. The main contributions of this study 

are as follows. 

1. Image generation using GANs is introduced for use as input data for classification. 

By using GAN with progressive growing mechanism, high-resolution images are 

generated in a stable manner. Generated images can improve the classification accu-

racy of IIPs. 

2. The CNN model used for classification is trained in two steps: a rough pretraining 

using generated pathological images, and fine tuning using real images to obtain 

high accuracy. 

2. Method 

2.1. Outline 

An outline of this study is presented in Figure 1. First, tissue specimens from IPF and 

non-IPF patients were scanned with a whole slide scanner and classified into patch im-

ages. Only valid patch images were registered in the image dataset. Subsequently, a GAN 

was introduced to generate synthesized IPF/non-IPF images and augment the image da-

taset, and a CNN trained on the GAN-generated images and real images was used to de-

rive the IPF/non-IPF classification results. 

 

Figure 1. Outline of the proposed method. 

2.2. Image Dataset 

Patients diagnosed with interstitial pneumonia who were biopsied at the Fujita Med-

ical University Hospital were included in this study. Of these patients, 12 were confirmed 

to have IPF, and 12 were diagnosed as non-IPF. The final diagnosis for patients without 

IPF consisted of non-specific interstitial pneumonia (NSIP), cryptogenic organizing pneu-

monia (COP), and pulmonary involvement associated with collagen vascular disease. 

Specimens were obtained by thoracoscopic lung biopsy and prepared by HE staining. The 

dataset included 23 patients with IPF and 33 non-IPF patients.  

Images of the specimens were collected using a whole slide scanner (AxioScan Z1, 

Carl Zeiss, Oberkochen, Germany), tiled with a microscope camera mounted with a 20× 

objective lens at a pixel resolution of 0.22 μm. The images were stored in CZI format with 

a 24-bit depth and compressed using the JPEG XR image compression algorithm. The ar-

eas of tissue present inside the specimen were scanned, resulting in a matrix count of 

72,200 × 59,600–229,200 × 102,700 for the stored images. 

  

PGGAN
(a)

Pretraining

(b) Fine-tuning

Digitized images

Patch imagesLung specimens Synthesized imagesWhole slide scanner

Non-IPF

IPF
Category output

Abbreviations:
PGGAN : progressive growing of generative adversarial networks
IPF : idiopathic pulmonary fibrosis
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2.3. Image Preprocessing 

As the whole-slide image of the pathology specimen was large, it was divided into 

smaller patch images for processing by deep learning, and the image dataset was con-

structed using a two-step selection process (Figure 2). 

First, because normal lung tissue is likely to impede the classification of IPF and non-

IPF, the area of pneumonia in the image was designated by the pathologist, and the region 

of interest was defined within that area. The whole slide images were then divided into 

patch images with a size of 2240 × 2240 pixels and raster scanning to avoid overlapping. 

These patch images also contain many background areas with no tissue. To remove patch 

images with no tissue, patch images were binarized using Otsu’s binarization algorithm 

such that the background was black and areas with tissue were white. Images with less 

than 10% of the total area showing tissue were excluded from processing. These processes 

resulted in 23,142 IPF and 7817 non-IPF images being registered in the image dataset for 

this study. 

Examples of typical IPF and non-IPF patch images are shown in Figure 3. Typical IPF 

lesions show a fibrotic pattern. However, there are many atypical ones, and it is often 

difficult to distinguish them from non-IPF patterns caused by a variety of factors. 

 

Figure 2. Preparation of patch images. 

 

Figure 3. Example images of typical IPF (a) and non-IPF (b) lesions. 

2.4. Data Augmentation by Generative Adversarial Networks 

In this study, we employed pathology specimens from 24 cases of rare diseases, 

which is a small number for deep learning models. Although the total number of images 

exceeds 30,000, there was little variation in the images, and there was some concern that 

overfitting could degrade the classification performance. Therefore, we introduced data 

augmentation to increase the amount of training data by artificially generating images 

similar to each class. Simple data augmentation methods generate new images using sim-

ple manipulations such as image rotation or scaling. This contributes slightly to an in-

crease in processing performance; however, the performance improvement that can be 

achieved with these methods is limited because they do not significantly change the image 

pattern itself. 

Recently, the use of GAN models, an image synthesis technique, to generate images 

similar to real images for deep learning has been widely investigated [18]. Onishi et al. 

demonstrated that the use of artificial nodule images generated by a GAN model in addi-

tion to actual CT images for automated differentiation of benign and malignant nodules 

on chest CT images improved the performance of nodule differentiation. In this study, we 

also aimed to improve classification performance by using GAN-generated images. 

The progressive growth of GANs (PGGAN) [19], which can generate high-resolution 

images, has been used as the GAN for data augmentation. Teramoto et al. used a PGGAN 

Tissue area/Total area
>0.1 ?
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Delete
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model to automatically generate high-resolution lung cell images and used them in the 

classification process to improve the performance of differentiating between benign and 

malignant lung cytology images. The results showed that the classification accuracy im-

proved [16].  

As shown in Figure 4, PGGAN gradually increases the resolution of a GAN trained 

to produce low-resolution images. Initially, a 4 × 4 pixel image was generated in two con-

volution layers with 128 random values (latent vectors). The discriminator identifies the 

real and generated images using two convolution layers and one fully connected layer. 

Then, by adding two convolution layers to the network of generators and discriminators, 

the system was adapted to generate 8 × 8 and 16 × 16 pixel images. This process was re-

peated seven times to produce a 256 × 256 pixel image; the base structure of PGGAN was 

based on WGAN-GP [20] and was trained using the Wasserstein distance with added gra-

dient penalty. Adam was used as the optimization algorithm, the learning coefficient lr 

was set to 0.00001, β1 to 0.9, and β2 to 0.999, and training was performed for 50 epochs. 

Using these methods, two PGGANs were created to generate IPF and non-IPF im-

ages. The two PGGANs were then assigned random values, and 10,000 images were gen-

erated for each. These were subsequently used to train the CNN. 

To evaluate the image quality of the images generated by the PGGAN model, we also 

generated images using a conventional deep convolutional GAN (DCNN) [21] without a 

progressive mechanism. The DCGAN comprised a generator with five convolutional lay-

ers and four scaling layers, as well as a discriminator with six convolution layers and a 

single fully connected layer to generate images with a size of 256 × 256 pixels from 128 

latent vectors. The model was trained over 2000 epochs using the Adam optimizer with a 

learning coefficient lr set to 0.00002, β1 to 0.9, and β2 to 0.999, and training was performed 

for 2000 epochs.  

 

Figure 4. Architecture of PGGAN. 

2.5. Two-Step Image Classification 

Pathological images were classified as IPF and non-IPF using a CNN model. To in-

crease the variation in images, we prepared images generated by the PGGAN in addition 

to real images, which were used for training in two stages as described below [16,18]. Note 

that the image matrix size was resized to 224 × 224 pixels when the images were provided 

to the CNN. 

First, the CNN for classification was trained using images generated by the PGGAN 

((a) in the Figure 5). However, they reproduced the shape, color, and arrangement of cells 
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in a real image, and we considered that studying pathological images using PGGAN-gen-

erated images to understand their general characteristics could be useful. Therefore, the 

CNNs were pretrained using PGGAN-generated images. Several CNN models (VGG-

16/19 [22], InceptionV3 [23], ResNet-50 [24], and DenseNet-121/169/201[25]) were pre-

trained using the ImageNet database, and the fully connected layer was replaced by a 

multilayer perceptron with 1024 and 2 units. 

These models were trained with 10,000 generated patch images for each IPF and non-

IPF case. The Adam optimization algorithm was used, with a learning coefficient lr of 

0.00001, β1 of 0.9, and β2 of 0.999, and training was performed for 50 epochs. These param-

eters were set so that the training loss was sufficiently reduced, and the validation loss 

did not increase in the preliminary experiments. 

Next, fine-tuning was performed on the CNN pre-trained using the generated images 

and real images ((b) in the Figure 5). As in a previous study [7], data augmentation was 

performed by rotating and flipping the images during the training. Because the number 

of real images was unbalanced between the two classes, the rotation angle was adjusted 

according to the class to achieve a balance. Consequently, 23,142 IPF cases and 23,451 non-

IPF cases were used for the training. 

In addition, as an ablation study, a CNN model trained on the ImageNet database 

without data augmentation by PGGAN was trained by transfer training on actual patho-

logical images and compared with the proposed method. 

 

Figure 5. Two-step training of CNN. 

2.6. Visualization 

In this study, pathological specimens were divided into patch images and CNN-

based classification was performed on a patch image basis. However, there were cells with 

various morphologies in these specimens. Therefore, to classify using the information of 

the entire specimen, the probability of IPF when the patch images were identified by the 

CNN was converted into color information, and the color map output was superimposed 

on the specimen. Pathologists can use the color map and pathology image for diagnosis, 

while simultaneously observing them. 

2.7. Evaluation Metrics 

The classification performance of the proposed method was evaluated using image- 

and case-based methods. In the image-based evaluation, performance was evaluated by 

tabulating the probability of IPF obtained by providing patch images to the CNN. For 

case-based classification, we calculated the average value of the probabilities of CNN-

output IPF in each case. Based on this value, IPF and non-IPF were classified. 

A cross-validation method was used to evaluate the classification ability [26]. In the 

cross-validation, the image dataset was divided into K subsets to avoid case fragmenta-

tion. The CNN was then trained on K-1 subsets; the image data belonging to the remaining 

subset were defined as test data, and the classification results were evaluated. In the cross-

validation method, the test results for all data were obtained by training and testing K 

times, while changing the subset used as the test data. The data were divided into five 

subsets (5-fold cross validation) and the classification ability was evaluated. 
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A confusion matrix was created based on the classification results of all images ob-

tained by cross-validation. Based on the matrix, IPF cases were assumed to be positive 

and non-IPF cases were assumed to be negative, and the sensitivity, specificity, and accu-

racy were calculated. We also generated receiver operating characteristic (ROC) curves by 

determining the true positive fraction (TPF), which is the proportion of correctly diag-

nosed IPF, and the false positive fraction (FPF), which is the proportion of incorrectly di-

agnosed non-IPF as IPF, while changing the cut-off value for the image-based or case-

based IPF probability. 

The calculation was performed using the original software written in the Python pro-

gramming language with an AMD Ryzen9 3950X processor and 128 GB of DDR4 memory. 

The training and validation of the CNNs were accelerated by using an NVIDIA Quadro 

RTX 8000 GPU. 

3. Results 

3.1. Synthesized Patch Images Using PGGAN 

Figure 6 shows a sample synthesis of IPF and non-IPF pathological images using 

PGGAN and DCGAN, along with real images. 

 

Figure 6. Real and synthesized images generated using PGGAN and conventional DCGAN models. 

(a) Images of IPF; (b) Images of non-IPF. 

3.2. Image Classification Results 

Figure 7 shows the results of image-based classification with and without data aug-

mentation using the PGGAN model. Next, the probability of a sample showing IPF was 

calculated for each image, and the results are shown in Figure 8. Table 1 shows the results 

of the image-based and case-based evaluations of the classification results with the aver-

age and standard deviation, and Table 2 shows the confusion matrix of the model with 
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the highest correct rate with and without data augmentation by PGGAN. Figure 9 shows 

the results of the ROC curves calculated using the two models. 

 

Figure 7. Classified images using the proposed method. (a) Correctly classified with and without 

PGGAN; (b) Correctly classified with PGGAN; (c) Incorrectly classified with and without PGGAN. 

 

(a)

IPF

non-IPF

(c)(b)

10 mm

(a) Correctly classified IPF case

(b) Incorrectly classified IPF case

(d) Incorrectly classified non-IPF case

(c) Correctly classified non-IPF case
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Figure 8. Probability map of classification. Red areas indicate a high probability of IPF. (a) Cor-

rectly classified specimens of IPF cases; (b) Incorrectly classified IPF case; (c) Correctly classified 

non-IPF case; (d) Incorrectly classified non-IPF case. 

Table 1. Performance evaluation. 

(a) Image-Based Classification 

CNN Model 
Data Aug-

mentation 
Sensitivity Specificity Accuracy AUC 

VGG-16 
w/o GAN DA 0.601 ± 0.062 0.547 ± 0.031 0.588 ± 0.050 0.615 ± 0.039 

w GAN DA 0.582 ± 0.040 0.587 ± 0.047 0.583 ± 0.019 0.618 ± 0.009 

VGG-19 
w/o GAN DA 0.609 ± 0.027 0.592 ± 0.015 0.605 ± 0.021 0.641 ± 0.021 

w GAN DA 0.607 ± 0.006 0.563 ± 0.014 0.596 ± 0.005 0.618 ± 0.007 

InceptionV3 
w/o GAN DA 0.625 ± 0.020 0.556 ± 0.023 0.608 ± 0.019 0.618 ± 0.032 

w GAN DA 0.595 ± 0.011 0.527 ± 0.004 0.578 ± 0.008 0.592 ± 0.006 

ResNet-50 
w/o GAN DA 0.614 ± 0.021 0.578 ± 0.011 0.605 ± 0.014 0.619 ± 0.019 

w GAN DA 0.540 ± 0.089 0.483 ± 0.090 0.526 ± 0.044 0.533 ± 0.009 

DenseNet-121 
w/o GAN DA 0.628 ± 0.018 0.568 ± 0.019 0.613 ± 0.009 0.628 ± 0.009 

w GAN DA 0.683 ± 0.008 0.521 ± 0.016 0.642 ± 0.002 0.644 ± 0.006 

DenseNet-169 
w/o GAN DA 0.658 ± 0.019 0.554 ± 0.007 0.632 ± 0.013 0.639 ± 0.022 

w GAN DA 0.691 ± 0.010 0.522 ± 0.015 0.649 ± 0.004 0.649 ± 0.004 

DenseNet-201 
w/o GAN DA 0.652 ± 0.036 0.557 ± 0.058 0.628 ± 0.013 0.632 ± 0.023 

w GAN DA 0.663 ± 0.013 0.548 ± 0.012 0.634 ± 0.007 0.646 ± 0.006 

(b) Case-Based Classification 

CNN Model 
Data Aug-

mentation 
Sensitivity Specificity Accuracy AUC 

VGG-16 
w/o GAN DA 0.806 ± 0.127 0.583 ± 0.083 0.694 ± 0.087 0.701 ± 0.064 

w GAN DA 0.861 ± 0.048 0.611 ± 0.048 0.736 ± 0.024 0.811 ± 0.039 

VGG-19 
w/o GAN DA 0.806 ± 0.048 0.639 ± 0.048 0.722 ± 0.024 0.765 ± 0.022 

w GAN DA 0.889 ± 0.048 0.639 ± 0.048 0.764 ± 0.024 0.843 ± 0.019 

InceptionV3 
w/o GAN DA 0.944 ± 0.048 0.583 ± 0.000 0.764 ± 0.024 0.757 ± 0.030 

w GAN DA 0.806 ± 0.096 0.667 ± 0.000 0.736 ± 0.048 0.744 ± 0.040 

ResNet-50 
w/o GAN DA 0.889 ± 0.048 0.611 ± 0.048 0.750 ± 0.042 0.722 ± 0.047 

w GAN DA 0.611 ± 0.048 0.444 ± 0.048 0.528 ± 0.024 0.522 ± 0.028 

DenseNet-121 
w/o GAN DA 0.861 ± 0.127 0.583 ± 0.000 0.722 ± 0.064 0.734 ± 0.033 

w GAN DA 0.972 ± 0.048 0.694 ± 0.048 0.833 ± 0.000 0.843 ± 0.005 

DenseNet-169 
w/o GAN DA 0.972 ± 0.048 0.583 ± 0.000 0.778 ± 0.024 0.786 ± 0.013 

w GAN DA 0.944 ± 0.048 0.639 ± 0.048 0.792 ± 0.042 0.826 ± 0.045 

DenseNet-201 
w/o GAN DA 0.833 ± 0.220 0.583 ± 0.000 0.708 ± 0.110 0.726 ± 0.074 

w GAN DA 0.833 ± 0.083 0.667 ± 0.083 0.750 ± 0.083 0.809 ± 0.024 

DA: Data augmentation. 

Table 2. Confusion matrix of classification (case-based classification). 

(a) Classification without PGGAN (DenseNet-169) 

 
Predicted Class 

Non-IPF IPF 

Actual class 
Non-IPF 7 5 

IPF 0 12 

(b) Classification Using PGGAN (DenseNet-121) 

 
Predicted Class 

Non-IPF IPF 
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Actual class 
Non-IPF 9 3 

IPF 1 11 

 

 
(a) 

 
(b) 

Figure 9. Receiver operating characteristic (ROC) curves: (a) Image-based classification; (b) Case-

based classification. 

4. Discussion 

In this study, we developed a method to classify IPF and non-IPF cases by using 

whole-slide pathology specimen images. Comparing the images generated by the 

PGGAN and conventional DCGAN models with the real image shown in Figure 6, it may 

be observed that the DCGAN reproduced an overall color distribution similar to that of 

the real image, but did not reproduce details such as cells. In contrast, PGGAN accurately 

reproduced the cells and their arrangement in the histopathological specimen in both IPF 

and non-IPF cases, and the fibrosis pattern that appears in IPF cases was also observed in 

the generated images. According to Figure 7, which shows the results of the classification, 

IPF cases tended to be correctly classified as IPF with a slightly paler color and fibrotic 

areas. In addition, because several disease classifications were included for non-IPF cases, 

images without IPF characteristics were classified as non-IPF images. A review of images 

erroneously classified into different classes showed that, for IPF cases, images with very 

dark or weak fibrosis were misclassified, whereas for misclassified non-IPF cases, images 

with IPF-like fibrosis or pale images were included. For misclassified non-IPF cases, im-

ages with dark or weak fibrosis were misclassified. 
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An IPF detection sensitivity of 0.658, specificity of 0.554, and accuracy of 0.632 were 

obtained using DenseNet-169 without PGGAN data augmentation in image-based evalu-

ation. When using PGGAN data augmentation, a detection sensitivity of 0.691, a specific-

ity of 0.522, and an accuracy of 0.649 were obtained using DenseNet-169. There was no 

difference in performance between the two groups, as shown by the ROC curve in Figure 

9a. 

In contrast, the case-based evaluation showed the highest performance when Dense-

Net-169 was used, with a sensitivity of 0.972, a specificity of 0.583, and an accuracy rate of 

0.778 when PGGAN was not used. However, when PGGAN data augmentation was used, 

the sensitivity was 0.972, the specificity was 0.694, and the accuracy rate was 0.833 with 

DenseNet-121, indicating that data augmentation with PGGAN contributed to the im-

provement in classification accuracy. AUC was used as an evaluation measure for com-

parison with previous studies, and the results showed AUC values of 0.92 for the existing 

methods that incorporated semi-automated methods, and an AUC of 0.65 for the auto-

mated classification. Our fully automated method exhibited an AUC of 0.843, which was 

higher than that of the previous automated method. 

In this work, we introduced multiple CNN models and compared their classification 

performance with and without data augmentation using a PGGAN. From these results, 

we found that some CNN models were highly effective with data augmentation, whereas 

others that were less effective. We assumed that the features to be extracted from the im-

ages generated by the PGGAN model differed depending on the structure of the CNN 

model. Even with only a single CNN, the best architecture generally varied depending on 

the target image. A comparative evaluation of CNN models is also necessary when using 

this method in conjunction with PGGAN. As a result of the evaluation, DenseNet exhib-

ited the best performance in combination with augmented data produced by the PGGAN 

model. 

Not all pathologists are able to correctly diagnose IPF, and a cohort study on the di-

agnostic accuracy of IPF showed that the accuracy of diagnosing IPF patients using pa-

thology and CT images depends on physician experience, and the correct diagnosis rate 

of IPF is about 0.7 on the C-index [27]. The proposed method has the potential to assist 

non-specialists in diagnosing IPF and can be used as a tool for resident education and 

diagnostic assistance because the distribution of lesions can be visualized using probabil-

ity maps. 

This work involves some limitations. For example, we only used specimens collected 

from a single institution. Further research should collect specimens from many institu-

tions to improve the performance of classification models. In terms of technology, we in-

troduced a PGGAN to generate high-resolution images and compared its performance 

with that of a DCGAN. Because image-generation technology is rapidly evolving, new 

image-generation models should be developed and comparative evaluations conducted. 

Although the training parameters of the CNN used in this study were fixed based on the 

results of preliminary experiments, automatic adjustment should be considered to obtain 

higher generalization performance. 

In the future, we plan to develop a diagnostic support system that implements the 

proposed method in an application to clinical practice. For this purpose, whether the pro-

posed approach can contribute to diagnosis by pathologists may be considered, including 

the reliability of the results. From a technical perspective, in developing diagnostic sup-

port applications, it is necessary to evaluate and optimize the computational cost of each 

process. 

5. Conclusions 

In this study, we have proposed an automated IPF detection method using a convo-

lutional neural network in combination with image generation technology to support the 

diagnosis of IPF using histopathological specimens. The results of an experimental evalu-

ation have shown that the pathological images generated by the PGGAN exhibited the 
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same characteristics as the real images. When they were used together to classify IIPs us-

ing a CNN model, the proposed approach outperformed the conventional method with 

accuracy and AUC values of 0.833. These results indicate that the proposed method may 

prove useful in classifying IIPs. 
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