論文

査読有り
2016年7月3日

Simultaneous decrease of arsenic and cadmium in rice (Oryza sativa L.) plants cultivated under submerged field conditions by the application of iron-bearing materials

Soil Science and Plant Nutrition
  • Tomoyuki Makino
  • Ken Nakamura
  • Hidetaka Katou
  • Satoru Ishikawa
  • Masashi Ito
  • Toshimitsu Honma
  • Naruo Miyazaki
  • Kunihiko Takehisa
  • Shuji Sano
  • Shingo Matsumoto
  • Aomi Suda
  • Koji Baba
  • Akira Kawasaki
  • Noriko Yamaguchi
  • Ikuko Akahane
  • Miki Tomizawa
  • Tomohito Arao
  • 全て表示

62
4
開始ページ
340
終了ページ
348
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1080/00380768.2016.1203731
出版者・発行元
Taylor and Francis Ltd.

The Codex Alimentarius Commission has recently adopted maximum levels for inorganic arsenic (As
in 2014) and total cadmium (Cd
in 2006) in polished rice grains to maintain food safety and to decrease the risk to human health. As rice is a staple crop in Japan and monsoon Asian countries, reducing concentrations of As and Cd in rice is an urgent matter. In flooded conditions, Cd concentration in soil solution decreases whereas As concentration increases. Therefore, we aimed to evaluate the efficiency of iron-bearing materials to decrease As concentration in soil solution and rice (Oryza sativa L.) grain under submerged cultivation, while also considering Cd concentration. In experiments conducted in paddy fields in six regions, As concentrations in the soil solution during the cultivation period decreased in the following order: control (REF) &gt
steel converter furnace slag (SCS) &gt
non-crystalline iron hydroxide (FH) &gt
zero-valent iron (ZVI). The concentrations of As in brown rice were in the same order, with ZVI achieving particularly strong reduction. Cadmium concentrations were low, probably owing to submerged cultivation conditions. Application of iron-bearing materials slightly and insignificantly reduced the yields of brown rice and straw. Application of these materials did not have a significant negative impact on the quality of rice. Our data indicate that the application of iron-bearing materials effectively reduces As concentrations in soil solution and rice grains without negative effects on yield and quality, with a particularly powerful effect of ZVI which is possibly explained by arsenic sulfide formation.

リンク情報
DOI
https://doi.org/10.1080/00380768.2016.1203731
J-GLOBAL
https://jglobal.jst.go.jp/detail?JGLOBAL_ID=201602228795375619
URL
http://www.tandfonline.com/doi/pdf/10.1080/00380768.2016.1203731
ID情報
  • DOI : 10.1080/00380768.2016.1203731
  • ISSN : 1747-0765
  • ISSN : 0038-0768
  • J-Global ID : 201602228795375619
  • SCOPUS ID : 84981294366

エクスポート
BibTeX RIS