This is the peer reviewed version of the following article:

Kutsuna, S. Determination of Rate Constants for Aqueous Reactions of HCFC-123 and HCFC-225ca with OH⁻ along with Henry's Law Constants of Several HCFCs. International Journal of Chemical Kinetics, 45, 440–451 (2013),

which has been published in final form at DOI: 10.1002/kin.20780.

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Determination of rate constants for aqueous reactions of HCFC-123 and HCFC-225ca with OH⁻ along with Henry's law constants of several HCFCs

Shuzo Kutsuna 1*

1. National Institute of Advanced Industrial Science and Technology (AIST),

16-1 Onogawa, Tsukuba, Ibaraki 305 8569, Japan

TITLE RUNNING HEAD: Hydrolysis rate constants of HCFC-123 and HCFC-225ca

ABSTRACT

Henry's law constants of six kinds of hydrochlorofluorocarbons (HCFCs) were determined at 313-353

K by means of a phase-ratio variation headspace method: $K_{\rm H} = K_{\rm H}^{353} \exp\left(-\frac{\Delta H_{sol}}{R}\left(\frac{1}{T} - \frac{1}{353}\right)\right)$ and

 $(K_{\rm H}^{353}$ in M atm⁻¹, $\Delta H_{\rm sol}$ in kJ mol⁻¹) = (0.0070±0.0006, -23±2), (0.0038±0.0011, -22±10), (0.0065±0.0007, -21±3), (0.0026±0.0007, -23±8), (0.0016±0.0003, -30±4), and (0.0022±0.0003, -25±4), respectively, for HCFC-141b (CH₃CCl₂F), HCFC-142b (CH₃CClF₂), HCFC-123 (CF₃CHCl₂), HCFC-124 (CF₃CHClF), HCFC-225ca (CF₃CF₂CHCl₂), and HCFC-225cb (CClF₂CF₂CHClF). Errors represent 2 standard deviations only for the fitting. Decay of headspace partial pressures of these HCFCs via hydrolysis was discerned only for CF₃CHCl₂ and CF₃CF₂CHCl₂ under the experimental conditions examined. Rate constants ($k_{\rm OH}$ - in M⁻¹ s⁻¹) for aqueous reactions of CF₃CF₂CHCl₂ and CF₃CHCl₂ with

OH⁻ at 313–353 K were determined to be
$$(0.57 \pm 0.04) \exp\left(-(11300 \pm 600) \times \left(\frac{1}{T} - \frac{1}{353}\right)\right)$$
 and

$$(2.9 \pm 0.2) \times 10^{-4} \exp\left(-(8800 \pm 900) \times \left(\frac{1}{T} - \frac{1}{353}\right)\right)$$
, respectively, from monitoring changes in headspace

partial pressure over prescribed concentrations of aqueous NaOH as a function of headspace time duration and concentration of aqueous NaOH. The calculations performed included consideration of gas-water equilibrium and hydrolysis at both headspace and room temperatures. The calculation for CF₃CHCl₂ also included consideration of salting-out effects: the salting coefficient of NaCl on a natural-log basis was determined to be 0.36 ± 0.06 M⁻¹ and this value was used for consideration of salting-out effect of NaOH. Whereas the activation energy for CF₃CF₂CHCl₂ was larger than that for CF₃CHCl₂, the *k*_{OH}- value at 353 K of CF₃CF₂CHCl₂ was 10³ times larger than that of CF₃CHCl₂, indicating that reaction mechanisms for these two HCFCs differed from each other. The aqueous reaction of CF₃CF₂CHCl₂ with OH⁻ was found to proceed through dehydrofluorination on the basis of detection of CF₃CF=CCl₂ as a primary degradation product of the reaction and proportionality of the rate constants to both concentrations of CF₃CF₂CHCl₂ and OH⁻.

KEYWORDS.

Hydrochlorofluorocarbon, CF₃CHCl₂, CF₃CF₂CHCl₂, Solubility, Hydrolysis, Dehydrofluorination.

Introduction

Hydrochlorofluorocarbons (HCFCs) have been used to replace chlorofluorocarbons (CFCs) for several applications because the former have shorter lifetimes in the atmosphere and consequently have lower stratospheric ozone depletion potentials (ODPs) than the latter (1). Nevertheless, under the Montreal Protocol and its subsequent amendments (2), HCFC consumption is due to be phased out by 2020 for developed countries and by 2030 for developing countries owing to HCFCs' classification as ODSs (Ozone-Depleting Substances). In compliance with the Montreal Protocol, discarded HCFC-containing equipment is collected and the HCFCs are extracted and destroyed at specified ODS destruction facilities, including rotary kilns such as in-service rotary kiln waste incinerators.

In a previous study (*3*), the author and coworkers found that the rate constants for HCFC-22 (CHClF₂) hydrolysis with OH⁻ (k_{OH^-}) at 353 K were 10 times larger than had been reported before, and thus concluded that alkaline wet scrubbers could be used to remove residual CHClF₂ in the wet flue gas cleaning system of ODS destruction facilities. We further noted that hydrolysis is a potential technique for destruction of CHClF₂. In this study, the author examined the hydrolysis of the following six commercial HCFCs: HCFC-141b (CH₃CCl₂F), HCFC-142b (CH₃CClF₂), HCFC-123 (CF₃CHCl₂), HCFC-124 (CF₃CHClF), HCFC-225ca (CF₃CF₂CHCl₂), and HCFC-225cb (CClF₂CF₂CHClF). Because the determination of k_{OH^-} requires input of Henry's law constant (K_{H}), the K_{H} values of the HCFCs were determined at 313–353 K by means of the phase-ratio variation headspace (PRV-HS) method (*4*) in a similar way as determined previously for CHClF₂ (*3*). The k_{OH^-} values of CF₃CHCl₂ and CF₃CF₂CHCl₂ were determined at 313–353 K, whereas hydrolysis of the other HCFCs was not detectable under the experimental conditions examined. In terms of the Henry's law constants and the rate constants determined, the author notes hydrolysis as a potential control technique for some HCFCs.

Experimental Methods

Materials

HCFC standard gas mixtures (diluted with synthetic air) were purchased from Takachiho Kogyou Co. Ltd. (Tokyo, Japan). The concentration of each standard gas mixture was 1000 ppmv (CH₃CCl₂F), 1020 ppmv (CH₃CClF₂), 959 ppmv (CF₃CHCl₂) and 1140 ppmv (CF₃CHClF). For CF₃CF₂CHCl₂ and CClF₂CF₂CHClF, a synthetic mixture of CF₃CF₂CHCl₂, CClF₂CF₂CHClF, and air was used, the concentrations of CF₃CF₂CHCl₂ and CClF₂CF₂CHClF being 1070 ppmv and 1310 ppmv, respectively. Test sample concentrations were set at about 2–13 ppmv by dilution of the HCFC standard gas mixture with ambient air.

Standard aqueous solutions of 5 M and 1 M sodium hydroxide (NaOH) were purchased from Wako Pure Chemical Industries (Osaka, Japan). Water was purified with a Millipore Milli-Q Gradient A10 system (>18 M Ω).

Determination of Henry's law constants

Henry's law constants of HCFCs were determined by the PRV-HS method in a way similar to that used in the previous study (*3*). The determination was carried out with an automatic headspace sampler (HP7694, Agilent Technologies, Palo Alto, CA) connected to a gas chromatograph mass spectrometer (GC-MS; Agilent GC6890N with 5973inert, Agilent Technologies, Palo Alto, CA). Headspace temperatures ranged from 313 to 353 K in intervals of 10 K. The headspace samples were continuously shaken slowly by a mechanical set-up for headspace equilibration time, and then headspace gas (1 cm³) was injected into the GC in split mode (split ratio = 1:30 or 1:20).

The time necessary to attain equilibration between the headspace and the aqueous solution was determined by analyzing the headspaces over test samples as a function of time until steady-state conditions were attained (5). Figure S1 plots the relative signal intensity of GC-MS peak areas for each HCFC, that is, the ratio of the headspace partial pressure at time *t* to that at 60 min (P_t / P_{60}), against the time (t_h) during which samples were placed in the headspace oven. The graph shows no increase or decrease in the peak area after about 30 minutes. Therefore, we set the headspace equilibration time at 1 h for all the measurements.

GC-MS peaks due to HCFCs were measured in selected-ion mode. A PoraBOND-Q capillary column (0.32-mm i.d. \times 50 m length, Agilent Technologies Inc., Palo Alto, CA) was used to separate the HCFCs; an Rts-1 capillary column (0.32-mm i.d. \times 60 m length, 1.5-µm film thickness, Restek, Co., Bellefonte, PA) was also used to separate CF₃CF₂CHCl₂ and CClF₂CF₂CHClF. The selected ions and the column temperatures used in each experiment are listed in Table S1. Helium was used as the carrier gas. The injection port was kept at 383 K.

Headspace samples, which contained five different amounts of each HCFC and six different volumes of water, were prepared for each temperature as follows (30 samples total). Volumes (V_i) of 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0 cm³ of Milli-Q water were pipetted into six headspace vials with a total volume (V) of 21.4 cm³ ($V_i/V = 0.070, 0.140, 0.210, 0.280, 0.350, and 0.421$, respectively). Five sets of the six headspace vials were prepared and sealed. A prescribed volume (v_j) of a standard gas mixture of HCFC and air was added to a set of five vials containing the same volume (V_i) of water by means of a gastight syringe ($v_j = 0.05, 0.10, 0.15, 0.20, \text{ or } 0.25 \text{ cm}^3$).

If P_{ij} is the equilibrium partial pressure in atm for a HCFC sample in a vial with volume V in cm³ containing V_i cm³ of water and v_j cm³ of HCFC gas mixture added, and if P_j is the equilibrium partial pressure in atm for the HCFC in a sample containing v_j cm³ of HCFC gas mixture without water, then Eq. 1 applies:

$$\frac{P_j V}{RT} = K_{\rm H}(T)P_{ij}V_i + \frac{P_{ij}(V - V_i)}{RT}$$
(1)

where $K_{\rm H}(T)$ is the Henry's law constant in M atm⁻¹ at temperature *T* in K and *R* is the gas constant (0.0821 dm³ atm K⁻¹ mol⁻¹).

Because the signal peak area of the HCFC (S_{ij}) at partial pressure P_{ij} is expected to be proportional to v_j for each set of samples with the same V_i , a plot of S_{ij} versus v_j should be a straight line intercepting the origin according to Eq. 2.

$$S_{ij} = L_i v_j \tag{2}$$

The slope of each line, denoted as L_i , corresponds to P_{ij} at $V_i = 1.0$ cm³. Letting L be the slope corresponding to P_i at $V_i = 1.0$ cm³, Eq. 3 applies.

$$\frac{1}{L_i} = \frac{1}{L} + \frac{RTK_{\rm H}(T) - 1}{L} \frac{V_i}{V} \qquad .$$
(3)

Plotting $\frac{1}{L_i}$ against $\frac{V_i}{V}$ gives an intercept of $\frac{1}{L}$ and a slope of $\frac{RTK_H(T)-1}{L}$, and $K_H(T)$ is

obtained from these two values. Therefore, $K_{\rm H}(T)$ can be determined by recording the peak area S_{ij} and deriving L_i from a plot of S_{ij} vs. v_j and then applying regression analysis to the plots of $\frac{1}{L_i}$ versus $\frac{V_i}{V}$ with respect to Eq. 3. In other words, the absolute headspace concentration of HCFC does not need to be known.

Because, as described later, high concentrations of aqueous NaOH (i.e., 0.5–3 M) were used to determine the k_{OH^-} of CF₃CHCl₂, the salting-out coefficient was estimated for the k_{OH^-} of CF₃CHCl₂ by using aqueous NaCl solutions.

Determination of rate constants for aqueous reactions with OH-

To evaluate the hydrolysis of the HCFCs, changes in headspace partial pressures were examined as a function of headspace time duration over a 1M NaOH aqueous solution at 353 K. As described in the *Results and Discussion* section, only two HCFCs, CF₃CF₂CHCl₂ and CF₃CHCl₂, exhibited a decrease in headspace partial pressure. For these two HCFCs, k_{OH^-} values were determined at 313–353 K in intervals of 10 K in a way similar to that applied in the previous study (*3*). The determination of k_{OH^-} values was carried out by means of an automatic headspace sampler connected to a gas chromatograph/mass spectrometer. A gas chromatograph with a flame ionization detector (FID-GC; Agilent GC6890N with 5973inert, Agilent Technologies, Palo Alto, CA) was also used with a Rts-1 wide-bore column (0.53-mm i.d. \times 30 m length, Restek, Co., Bellefonte, PA) for estimating the conversion ratio of CF₃CF₂CHCl₂ into its degradation product.

A series of headspace samples (typically, 8 samples) containing a prescribed volume (typically, 9.0 cm³) and a prescribed concentration of aqueous NaOH solution were prepared for each temperature. The concentration of NaOH was set at 1–4 mM for CF₃CF₂CHCl₂ and at 0.5–3 M for CF₃CHCl₂ by dilution of a 1 or 5 M standard aqueous NaOH solution with water. The same amount of the HCFC standard gas was added to each sealed test sample; the concentration of CF₃CF₂CHCl₂ or CF₃CHCl₂ corresponded to ca. 13 ppmv if aqueous NaOH was absent. The time during which samples were placed in the headspace oven (*t*_h) was set at 1–12 h (CF₃CF₂CHCl₂) or 1–8 h (CF₃CHCl₂) and differed among samples, and then the signal peak area of CF₃CF₂CHCl₂ or CF₃CHCl₂ (*S_t*) was measured for a series of samples as a function of *t*_h. During this time duration, the headspace samples were continuously shaken slowly by a mechanical set-up. Because the temperature of the headspace samples reached the set temperature within 40 min, *S_t* decayed exponentially with respect to *t*_h when *t*_h was longer than 40 min, as shown in Eq. 4:

$$\frac{dS_t}{dt} = -k_1^{(g)}(T)S_t \tag{4}$$

where $k_1^{(g)}(T)$ is the first-order rate constant for decay of CF₃CF₂CHCl₂ or CF₃CHCl₂ in the gas phase (headspace) at temperature *T* in K. Integrating Eq. 4 with respect to *t* from 1 h to *t*_h gives Eq. 4':

$$\ln(S_t) = A_1 - k_1^{(g)}(T)t_h$$
(4')

where A_1 is a constant that is common to each series of headspace samples. When the gas-water equilibrium of $CF_3CF_2CHCl_2$ or CF_3CHCl_2 is established, the rate constant of decay is given by Eq. 5:

$$k_1^{(g)}(T) = \frac{k_1^{(l)}(T)}{Q_i(T)}$$
(5)

where $Q_i(T)$ is given by Eq. 6, and $k_1^{(1)}(T)$ is a pseudo-first-order rate constant for hydrolysis of CF₃CF₂CHCl₂ or CF₃CHCl₂ in water at temperature *T* and is expressed by Eq. 7.

$$Q_{i}(T) = 1 + \frac{1}{K_{\rm H}^{*}(T)RT} \left(\frac{V}{V_{i}} - 1\right)$$
(6)

$$k_{1}^{(l)}(T) = k_{OH^{-}}(T)[OH^{-}] + k_{N}(T)$$
⁽⁷⁾

where $K_{\text{H}}^{*}(T)$ is a Henry's law constant that accounts for the salting-out effect; and $k_{\text{OH}}(T)$ and $k_{\text{N}}(T)$ are rate constants for aqueous reactions of CF₃CF₂CHCl₂ or CF₃CHCl₂ with OH⁻ and water, respectively, at temperature *T*. Because $k_{\text{N}}(T)$ is negligible compared to the quantity ($k_{\text{OH}}(T)$ [OH⁻]) under the experimental conditions used in this study, Eqs. 5 and 7 can be combined to give Eq. 5'.

$$k_1^{(g)}(T) = \frac{k_1^{(l)}(T)}{Q_i(T)} = \frac{k_{OH^-}(T)[OH^-]}{Q_i(T)}$$
(5')

Notably, Eq. 4' must be corrected to account for hydrolysis that might have occurred at room temperature before the sample vial was placed in the headspace oven. The duration (t_r) during which the sample was kept at room temperature (298 ± 2 K) before being placed in the headspace oven differed between experimental runs. Hydrolysis of CF₃CF₂CHCl₂ or CF₃CHCl₂ at room temperature might have been significant, especially for experimental runs with lower headspace temperatures such as 313 K. Hence, Eq. 4' was replaced by Eq. 8:

$$\ln(S_t) = A_2 - k_1^{(g)}(T)t_h - k_1^{(g)}(298)t_r = A_2 - k_1^{(g)}(T)t_m$$
(8)

where A_2 is a constant, which is common to each series of headspace samples, and t_m is given by Eq. 9:

$$t_{\rm m} = t_{\rm h} + \frac{k_1^{(\rm g)}(298)}{k_1^{(\rm g)}(T)} t_{\rm r}.$$
(9)

Combining Eqs. 5' and 9 gives Eq. 10:

$$t_{\rm m} = t_{\rm h} + \frac{k_{\rm OH^-}(298)}{k_{\rm OH^-}(T)} \frac{Q_i(T)}{Q_i(298)} t_{\rm r} = t_{\rm h} + \exp\left[-\frac{\Delta E_{\rm a}}{R} \left(\frac{1}{298} - \frac{1}{T}\right)\right] \frac{Q_i(T)}{Q_i(298)} t_{\rm r}$$
(10)

where ΔE_a is the activation energy for aqueous reaction of CF₃CF₂CHCl₂ or CF₃CHCl₂ with OH⁻, as expressed by Eq. 11 (Arrhenius equation):

$$k_{\rm OH^-}(T) = A \exp\left(-\frac{\Delta E_{\rm a}}{RT}\right) \tag{11}$$

where A is the Arrhenius parameter. Eq. 11 can be represented using the k_{OH} value at 353 K by Eq. 11'.

$$k_{\rm OH^{-}}(T) = k_{\rm OH^{-}}(353) \exp\left[-\frac{\Delta E_{\rm a}}{R} \left(\frac{1}{T} - \frac{1}{353}\right)\right]$$
(11')

Values of $k_1^{(g)}$ were determined from nonlinear regression of plots of S_t versus t_h with Eq. 4', and then values of $k_1^{(1)}$ were calculated from the $k_1^{(g)}$ values and $Q_i(T)$ with Eq. 5. Linear regression of the obtained $k_1^{(1)}(T)$ values versus NaOH concentration with weighting (error)⁻² at each temperature yielded a series of k_{OH} -(T) values at different temperatures. Nonlinear regression of the temperature dependence of the k_{OH} -(T) values with weighting (error)⁻² according to Eq. 11 gave ΔE_a . ΔE_a was used to calculate t_m with Eq. 10, and nonlinear regression of plots of S_t versus t_m with Eq. 8 gave $k_1^{(g)}$. This procedure was repeated until both k_{OH} -(T) and ΔE_a converged.

In the previous study, the author et al. (3) made an additional correction of Eq. 5' to account for aqueous-phase diffusion. However, in this work the author made no additional correction because the data were fit well by Eq. 5' as shown below in the *Results and Discussion* section.

Results and Discussion

Determination of Henry's law constants

Fig. S2A plots the peak area (S_{ij}) against the volume of CH₃CCl₂F gas mixture added (v_j) for samples of CH₃CCl₂F with $V_i = 9.0, 7.5, 6.0, 4.5, 3.0, and 1.5 \text{ cm}^3$ at 343 K. The data obtained for each V_i form a straight line intersecting the origin, indicating that S_{ij} was proportional to v_j for vials with the same value of V_i . The slope (L_i) of each line was obtained by linear regression with respect to Eq. 2, and the reciprocal slope (L_i^{-1}) was plotted against the phase ratio (V_i/V) as shown in Fig. S2B. Errors of L_i indicate two standard deviations only for the regression.

Plots of L_i^{-1} and V_i/V obey Eq. 3. The slopes, intercepts, and correlation coefficients for linear regression with weighting (error)⁻² with respect to Eq. 3 are given along with the $K_H(T)$ values calculated from the slopes and intercepts in Table S2: Table S2 also lists the corresponding values for CH₃CCl₂F at the other temperatures. The corresponding values of CH₃CClF₂, CF₃CHCl₂, CF₃CHCl₇, CF₃CF₂CHCl₂, and CClF₂CF₂CHClF are listed in Tables S3, S4, S5, S6, and S7, respectively. For CF₃CF₂CHCl₂ and CClF₂CF₂CHClF, errors of K_H were relatively large because the values of K_H were small (<5 × 10⁻³ M atm⁻¹). Quadruple measurements of K_H were hence carried out at each temperature and the K_H value at each temperature was determined to be the average of the quadruple measurements with weighting (error)⁻².

Fig. 1 shows the temperature dependence of $K_{\rm H}(T)$ values determined in this study for CH₃CCl₂F, CH₃CClF₂, CF₃CHCl₂, and CF₃CHClF, along with values reported in the literature (6, 7). Fig. 2 shows the temperature dependence of $K_{\rm H}(T)$ values determined in this study for CF₃CF₂CHCl₂ and CClF₂CF₂CHClF. The temperature-dependence of $K_{\rm H}(T)$ is generally represented by the van't Hoff equation (Eq. 12):

$$K_{\rm H}(T) = K_{\rm H}(T_0) \exp\left[-\frac{\Delta H_{\rm sol}}{R} \left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$$
(12)

where T_0 is a prescribed temperature, for example, 353 K; $K_{\rm H}(T_0)$ is the Henry's law constant at temperature T_0 ; and $\Delta H_{\rm sol}$ is the enthalpy of dissolution of HCFC into water. As shown in Figs. 1 and 2, the relationship between $\ln(K_{\rm H}(T))$ and T^{-1} for each HCFC was linear in the temperature range examined and obeyed Eq. 12. The plot of $K_{\rm H}(T)$ versus T^{-1} was nonlinearly fitted with weighting (error)⁻² with respect to Eq. 12 to determine $K_{\rm H}(353)$, $K_{\rm H}(298)$ and $\Delta H_{\rm sol}$. Table I lists the $K_{\rm H}(353)$, $K_{\rm H}(298)$ and $\Delta H_{\rm sol}$ values determined. The error represents two standard deviations only for the fitting. Table I also lists the corresponding values reported in the literature (6, 7).

As shown in Fig. 1 and Table I, the $K_{\rm H}(T)$ values obtained for CH₃CClF₂ and CF₃CHClF are, within experimental error, in good agreement with the reported values. In contrast, although the $K_{\rm H}(T)$ values obtained for CF₃CHCl₂ are in agreement with the reported values at the higher temperatures examined, such as 353 K, the $K_{\rm H}(T)$ values for CF₃CHCl₂ were smaller than the reported values by several tens of percent at lower temperatures examined, such as 313 K,. The reason for this difference is unclear. In addition, the $K_{\rm H}(T)$ values obtained for CH₃CCl₂F were an order of magnitude larger than the reported values. The resulting values of $\Delta H_{\rm sol}$ for CH₃CCl₂F were significantly different as well, with the previously published value somewhat out of line with others. Although the solubility of CH₃CCl₂F in water is expected to be larger than that of CH₃CClF₂ because CH₃CCl₂F has one more Cl atom and one less F atom than CH₃CClF₂, the reported $K_{\rm H}(T)$ values for CH₃CCl₂F might have been underestimated. To the author's knowledge, the data shown in Fig. 2 and Table I are the first reported $K_{\rm H}(T)$ values for CF₃CF₂CHCl₂ and CClF₂CF₂CHClF.

Headspace partial pressures of CH₃CCl₂F, CH₃CClF₂, CF₃CHClF, and CClF₂CF₂CHClF over 1M aqueous NaOH at 353 K

Fig. S3 shows changes in relative headspace partial pressures of CH₃CCl₂F, CH₃CClF₂, CF₃CHClF, and CClF₂CF₂CHClF as a function of headspace equilibration time (t_h) at 353 K for $V_i = 9.0$ cm³ of 1 M aqueous NaOH. The ordinate (P_t/P_{60}) indicates the ratio of the headspace partial pressure at time $t = t_h$ to that at 60 min. The P_t values remained almost constant: application of Eq. 4' to the data gave $k_1^{(g)} = -$ (2.1±3.8) × 10⁻⁶, $-(1.3\pm7.4) \times 10^{-6}$, (1.9±3.6) × 10⁻⁶, and $-(2.7\pm4.0) \times 10^{-6}$ s⁻¹, respectively, for CH₃CCl₂F, CH₃CClF₂, CF₃CHClF, and CClF₂CF₂CHClF (errors represent two standard deviations only for the fitting). In other words, decay of these HCFCs was not observed within the reported errors. Upper limit value of k_{OH^-} , which is designated as U(k_{OH^-}) hereafter, was evaluated from Eq. 5'. Since the $Q_i(T)$ values were calculated to be 7.8±0.6, 13.5±3.6, 19.3±4.9, and 22.6±3.0, respectively, for CH₃CCl₂F, CH₃CClF₂, CF₃CHClF, and CClF₂CF₂CHClF by use of Eq. 6 and the $K_{\rm H}(T)$ values listed in Table I, U($k_{\rm OH^-}$) values in M⁻¹ s⁻¹ were calculated to be 4.6 × 10⁻⁵, 1.2 × 10⁻⁴, 3.3 × 10⁻⁵, and 1.5 × 10⁻⁴, respectively, for CH₃CCl₂F, CH₃CClF₂, CF₃CHClF, and CClF₂CF₂CHClF.

In contrast, as shown in Figs. 3 and 4, $CF_3CF_2CHCl_2$ and CF_3CHCl_2 decreased through aqueous reaction with OH⁻. In particular, decay of $CF_3CF_2CHCl_2$ could be discerned for samples containing much lower concentrations (1–4 mM) of aqueous NaOH. Rate constants for aqueous reactions of $CF_3CF_2CHCl_2$ and CF_3CHCl_2 with OH⁻ were determined at 313–353 K as described in the following sections.

Determination of rate constants for aqueous reactions of CF₃CF₂CHCl₂ with OH⁻ via Eqs. 4' and 8

Changes in P_t/P_{60} for CF₃CF₂CHCl₂ were examined as a function of t_h at 313–353 K for $V_i = 9.0$ cm³ of 1, 2, 3, and 4 mM aqueous NaOH. Fig. 3A plots the data at 353 K. The $k_1^{(g)}$ values were determined by regression of the P_t/P_{60} values versus t_h with Eq. 4' for each NaOH concentration. The $k_1^{(l)}$ values were calculated from $k_1^{(g)}$ values by means of Eq. 5' by using the calculated Q_i value and were plotted against NaOH concentration (Fig. 3B). The Q_i values were calculated with Eq. 5 from $K_H(T)$ deduced from Eq. 12. The errors ($\delta k_1^{(l)}$) represent both two standard deviations for the linear regression ($\delta_r k_1^{(g)}$) and the errors due to two standard deviations of $Q_i(T)$ ($\delta Q_i(T)$); that is,

$$\delta k_1^{(l)} = k_1^{(l)} \sqrt{\left(\frac{\delta_r k_1^{(g)}}{k_1^{(g)}}\right)^2 + \left(\frac{\delta Q_i(T)}{Q_i(T)}\right)^2}$$
. As shown in Fig. 3B, the $k_1^{(l)}$ values were nearly proportional to

the NaOH concentrations. Linear regression of the data with weighting (error)⁻² with respect to Eq. 5' gave the k_{OH^-} values. Fig. S4 plots P_t/P_{60} against t_{h} (panels A1–A4) and plots $k_1^{(1)}$ against NaOH concentration (panels B1–B4) at 313–343 K. Table II lists the k_{OH^-} values obtained at 313–353 K. Figure 5 shows an Arrhenius plot of the k_{OH^-} values thus obtained. The ΔE_a values were obtained by nonlinear regression weighting (error)⁻² with respect to Eq. 11, and are listed in Table II. Furthermore, the k_{OH^-} values were corrected for hydrolysis at room temperature as follows.

The influence of hydrolysis of CF₃CF₂CHCl₂ at room temperature (298 ± 2 K) prior to the sample being placed in the headspace oven was taken into account to obtain $k_1^{(1)}$ (Fig. 3B; iteration processes were carried out with Eq. 8 as described in the *Experimental Methods* section). The Q_i (298) value was calculated to be 5.5 ± 0.7 from Eq. 5 by using $K_{\rm H}$ (298), which was calculated from Eq. 12 (Table I). Closed symbols in panels A in Figs. 3 and S4 plot P_t against $t = t_{\rm m}$. Values of $t_{\rm m}$ were calculated from the convergence value of ΔE_a with Eq. 10. The $k_1^{(g)}$ values were obtained by nonlinear regression of the data of P_t/P_{60} versus $t_{\rm m}$ with Eq. 8 for each NaOH concentration. The $k_1^{(1)}$ values, which were calculated from the $k_1^{(g)}$ values and Q_i , were plotted against aqueous NaOH concentrations in panels B of Figs. 3 and S4. The $k_1^{(1)}$ values were proportional to NaOH concentrations at each temperature within the NaOH concentration range examined. Linear regression of the data with weighting (error)⁻² with respect to Eq. 5' gave the k_{OH} - values.

Table II lists the corrected k_{OH^-} values obtained at 313–353 K along with the ΔE_a value obtained by convergence in the iteration process. Fig. 5 shows an Arrhenius plot of the k_{OH^-} values obtained. The $k_{\text{OH}^-}(T)$ values of CF₃CF₂CHCl₂ were eventually determined to be $(0.575 \pm 0.043)\exp\left(-(11300 \pm 620) \times \left(\frac{1}{T} - \frac{1}{353}\right)\right)$ in M⁻¹ s⁻¹. The $k_{\text{OH}^-}(T)$ value at 353 K (0.58 ± 0.04)

 M^{-1} s⁻¹) and the ΔE_a value (94 ± 5 kJ mol⁻¹) for CF₃CF₂CHCl₂ determined here were as large as those determined for CHClF₂ (0.64 ± 0.10 M⁻¹ s⁻¹ and 93 ± 14 kJ mol⁻¹) in the previous study (*3*).

A degradation product for aqueous reactions of CF₃CF₂CHCl₂ with OH⁻

A GC peak due to a reaction product was detected at a retention time earlier than that of CF₃CF₂CHCl₂. This reaction product is denoted *product X* hereafter. FID-GC measurements were run on headspace test samples of CF₃CF₂CHCl₂, which contained 9.0 cm³ of 1 or 2 mM aqueous NaOH, for evaluating conversion ratios of CF₃CF₂CHCl₂ into *product X*. The quantities $S_{\text{HCFC-225ca}}(t_{\text{h}})$ and $S_X(t_{\text{h}})$ represent the FID signal intensity of CF₃CF₂CHCl₂ and of *product X*, respectively, at time t_{h} . Fig. 6A plots $S_X(t_{\text{h}})$ against $\Delta S_{\text{HCFC-225ca}}(t_{\text{h}})$, where $\Delta S_{\text{HCFC-225ca}}(t_{\text{h}}) = S_{\text{HCFC-225ca}}(0) - S_{\text{HCFC-225ca}}(t_{\text{h}})$. The data display a linear relationship with a slope of 0.91 ± 0.06 between $S_X(t_{\text{h}})$ and $\Delta S_{\text{HCFC-225ca}}(t_{\text{h}})$. This linear relationship indicates that *product X* is a primary product consisting of three carbon atoms from CF₃CF₂CHCl₂, because FID signal intensity is generally proportional to the carbon number of organic samples.

Fig. 6B shows a mass spectrum of *product X*. Because the peak at m/z = 182 corresponds to $C_2F_4CCl_2^+$, *product X* can be identified as $CF_3CF=CCl_2$. Other peaks are reasonably assigned to fragment ions of $CF_3CF=CCl_2$: m/z = 69 (CF_3^+), 78 ($CFCCl^+$), 93 ($CF_3C_2^+$), 147 ($C_2F_4CCl^+$), and 163 ($C_2F_3CCl_2^+$). The peak at m/z = 132 is probably due to $CF_2CCl_2^+$ following rearrangement of fluorine and elimination of CF_2 as $CF^2CH_2^+$ is formed from $CF_3CF=CH_2^+$ (8). Accordingly, aqueous reaction of $CF_3CF_2CHCl_2$ with OH^- is found to proceed through dehydrofluorination (9). Because aqueous reactions of $CF_3CF_2CHCl_2$ with OH^- followed second-order kinetics, first-order in $CF_3CF_2CHCl_2$ and first-order in OH^- , as shown in Fig. 3, aqueous reaction of $CF_3CF_2CHCl_2 + OH^- \rightarrow CF_3CF=CCl_2 + F^- + H_2O$.

Determination of rate constants for aqueous reactions of CF₃CHCl₂ with OH⁻ via Eqs. 4' and 8

The k_{OH^-} values of CF₃CHCl₂ were determined at 313–353 K in a similar way as aforementioned for CF₃CF₂CHCl₂ except that gas-water equilibrium included consideration of the salting-out effect.

Because CF₃CHCl₂ hydrolysis occurred at a substantially slower rate than that of CF₃CF₂CHCl₂, higher concentrations of aqueous NaOH, such as 1 M, were used to determine the hydrolysis rates of CF₃CHCl₂; therefore, the salting-out effect could have been significant and needed to be included in calculations for accurate determination of k_{OH^-} values. The salting-out effect was represented by the Setchinow-Harned-Owen equation, as follows (*11*):

$$\ln\left(\frac{K_{\rm H}^{0}}{K_{\rm H}^{m_{\rm s}}}\right) = k_{\rm s}m_{\rm s}$$
(13)

where $K_{\rm H}^0$ and $K_{\rm H}^{m_5}$ are the Henry's law constant and the apparent Henry's law constant, respectively, for water having an ionic molality $m_{\rm s}$ (in mol kg⁻¹) of salt *S*, and $k_{\rm s}$ is a salting coefficient of salt *S* expressed on a natural-log basis. The salting-out effect was estimated by use of aqueous NaCl solutions instead of aqueous NaOH solutions. An ionic molality $m_{\rm s}$ was approximated by ionic molarity $m_{\rm s}$ (in M) here. The apparent $K_{\rm H}$ values were determined at 313, 333, and 353 K for test samples containing 9.0 cm³ of 1 and 2 M aqueous NaCl solutions. The determination was performed twice for each NaCl concentration at each temperature. Fig. S6 plots the average of each set of two data points against NaCl concentration. Because the temperature dependence of $k_{\rm s}$ was unclear, linear regression was applied to all the data with weighting (error)⁻² with respect to Eq. 13 to give $k_{\rm s} = 0.36 \pm 0.06 \text{ M}^{-1}$. The errors represent two standard deviations only for the regression. The apparent Henry's law constants, $K_{\rm H}(T)^*$, were calculated with Eq. 13 from the evaluated $k_{\rm s}$ value, $K_{\rm H}(T)$, and concentration of NaOH; $K_{\rm H}(T)^*$ values were used to deduce $k_1^{(1)}$ from $k_1^{(2)}$ with Eq. 5.

Changes in P_t/P_{60} for CF₃CHCl₂ were examined as a function of t_h and t_m at 313–353 K for $V_i = 9.0$ cm³ in a similar way as aforementioned for CF₃CF₂CHCl₂. Fig 4A plots P_t/P_{60} against t_h and t_m at 353 K. Fig. 4B plots the $k_1^{(1)}$ values determined from the data of P_t/P_{60} versus t_h or t_m against NaOH concentration. Fig. S5 plots P_t/P_{60} against t_h and t_m (panels A1–A4) and $k_1^{(1)}$ against NaOH concentration (panels B1–B4) at 313–343 K. The $k_1^{(1)}$ values were mostly proportional to NaOH concentration at each temperature within the NaOH concentration range examined. Linear regression of the data with weighting (error)⁻² with respect to Eq. 5' gave the k_{OH} - values.

Table II lists the k_{OH^-} values of CF₃CHCl₂ thus corrected at 313–353 K along with the ΔE_a value obtained by convergence in the iteration process. Fig. 5 shows an Arrhenius plot of the k_{OH^-} values of CF₃CHCl₂ thus obtained. The $k_{\text{OH}^-}(T)$ values of CF₃CHCl₂ were eventually determined to be $(2.90 \pm 0.15) \times 10^{-4} \exp\left(-(8770 \pm 910) \times \left(\frac{1}{T} - \frac{1}{353}\right)\right)$ in M⁻¹ s⁻¹: The k_{OH^-} value at 353 K was (2.90 ± 0.15) $\times 10^{-4}$ M⁻¹ s⁻¹ and the ΔE_a value was 73 ± 8 kJ mol⁻¹.

Comparison of CF₃CF₂CHCl₂ and CF₃CHCl₂ aqueous reactions with OH⁻

The k_{OH^-} value at 353 K of CF₃CF₂CHCl₂ was 10³ larger than that of CF₃CHCl₂, although the ΔE_a value of CF₃CF₂CHCl₂ was larger than that of CF₃CHCl₂. With the intention of understanding the difference between aqueous reactions of CF₃CF₂CHCl₂ and CF₃CHCl₂, with OH⁻, the free energy, enthalpy, and the entropy of activation for the aqueous reactions were evaluated from the k_{OH^-} values and the ΔE_a values obtained. According to transition state theory, k_{OH^-} is given by Eq. 14:

$$k_{\rm OH^-} = \frac{k_{\rm B} T}{h} \exp\left(-\frac{\Delta G^{\ddagger}}{R T}\right)$$
(14)

where ΔG^{\ddagger} is the free energy of activation, $k_{\rm B}$ is Boltzmann's constant, and *h* is Planck's constant. Letting the enthalpy and the entropy of activation be ΔH^{\ddagger} and ΔS^{\ddagger} , respectively, Eqs. 15 and 16 apply:

$$\Delta H^{\ddagger} = \Delta E_a + RT \tag{15}$$

$$\Delta G^{\ddagger} = \Delta H^{\ddagger} - T \Delta S^{\ddagger} \tag{16}$$

Values of ΔG^{\ddagger} , ΔH^{\ddagger} , and ΔS^{\ddagger} can be calculated from $k_{OH^{-}}$ and ΔE_{a} with use of Eqs. 14–16 at each temperature and are listed for CF₃CF₂CHCl₂ and CF₃CHCl₂ in Table S8. There is a definitive difference in entropy of activation: ca. 7 J K⁻¹ mol⁻¹ for CF₃CF₂CHCl₂ and ca. –115 J K⁻¹ mol⁻¹ for CF₃CHCl₂. This difference indicates that reaction mechanisms for aqueous reactions of CF₃CF₂CHCl₂ and CF₃CHCl₂ with OH⁻ should be different.

As mentioned earlier, aqueous reactions of $CF_3CF_2CHCl_2$ with OH^- proceed through dehydrofluorination, and they displayed second-order kinetics, first-order in $CF_3CF_2CHCl_2$ and first-order in OH^- . The reaction mechanism that satisfies these characteristics includes E2 and two E1cB mechanisms [10]. In the E2 mechanism, both the C–H and C–F bonds cleave simultaneously via a single transition state. In the E1cB mechanisms, the C–H bond is ruptured prior to scission of the C–F bond (Eq. 17):

$$OH^{-} + H^{-}C^{-}C^{-}F \underset{l}{\overset{l}{\longrightarrow}} \underset{k_{-1}}{\overset{l}{\longrightarrow}} H_{2}O + \underset{l}{\overset{l}{\longrightarrow}} C^{-}C^{-}F \underset{l}{\overset{l}{\longrightarrow}} H_{2}O + \underset{c}{\overset{l}{\longrightarrow}} C^{-}C^{-}F \underset{c}{\overset{l}{\longrightarrow}} H_{2}O + \underset{c}{\overset{c}{\longrightarrow}} C^{-}C^{-}F \underset{c}{\overset{c}{\longrightarrow}} H_{2}O + \underset{c}{\overset{c}{\longrightarrow}} C^{-}F \underset{c}{\overset{c}{\longrightarrow}} H_{2}O + \underset{c}{\overset{c}{\longleftrightarrow}} C^{-}F \underset{c}{\overset{c}{\longrightarrow}} H_{2}O + \underset{c}{\overset{c}{\longleftrightarrow}} H_{2}O + \underset{c}{\overset{c}{\longleftrightarrow}} H_{2}O + \underset{c}{\overset{c}{\longleftrightarrow} H_{2}O + \underset{c}{\overset{c}{\longleftrightarrow}} H_{2}O + \underset{c}{\overset{c}{\longleftrightarrow} H_{2}O + \underset{c}{\overset{c}{\longleftrightarrow}} H_{2}O + \underset{c}{\overset{c$$

Depending upon the relative magnitudes of k_1 , k_{-1} , and k_2 , three distinct possibilities for base-promoted olefin formation by E1cB mechanisms exist: reversible E1cB or (E1cB)_R; irreversible E1cB or (E1cB)_I;

and E1. The E1 mechanism is not considered here because it does not display second-order kinetics. If k_{-1} [H₂O] >> k_2 , the reaction involves a rapid preequilibrium step followed by slow unimolecular elimination from the carbanion: the mechanism is termed (E1cB)_R, and its rate is represented by Eq. 18:

$$rate(E1cB)_{R} = \frac{k_{1} k_{2} [CF_{3}CF_{2}CHCl_{2}][OH^{-}]}{k_{-1}[H_{2}O]}$$
(18)

If $k_2 \gg k_{-1}$ [H₂O], proton abstraction is rate-limiting, and the resulting carbanion decomposes unimolecularly to an alkene more rapidly than it undergoes protonation by water; the mechanism is termed (E1cB)_I and its rate is represented by Eq. 19:

$$rate(E1cB)_{I} = k_{1} [CF_{3}CF_{2}CHCl_{2}][OH^{-}]$$
(19)

As shown above (Table S8), the ΔS^{\ddagger} values obtained for aqueous reactions of CF₃CF₂CHCl₂ with OH⁻ were positive. However, typical values of ΔS^{\ddagger} for the E2 and (E1cB)_I mechanisms are reported to be much more negative [*12*] because the transition state includes association of reactants. In contrast, positive or near-zero values of ΔS^{\ddagger} have been reported for the (E1cB)_R mechanism [*12*, *13*, *14*] as $k_{\text{OH}^-} = k_1 k_2 / (k_{-1}[\text{H}_2\text{O}])$. Accordingly, aqueous reactions of CF₃CF₂CHCl₂ with OH⁻ probably proceed through base-promoted (E1cB)_R-type dehydrofluorination such as CF₃CF₂CHCl₂ + OH⁻ \neq H₂O + [CF₃CF₂CCl₂]⁻ \rightarrow H₂O + CF₃CF=CCl₂ + F⁻.

In contrast, aqueous reactions of CF₃CHCl₂ with OH⁻ cannot proceed through such dehydrofluorination as that observed for CF₃CF₂CHCl₂. The reason is unclear. The large negative ΔS^{\ddagger} for aqueous reactions of CF₃CHCl₂ with OH⁻ implies that the reaction may proceed through an E2 or (E1cB)₁ mechanism or other mechanism such as nucleophilic substitution by OH⁻.

Implications of the results for ODS destruction technology

The hydrolysis of six kinds of commercial HCFCs was examined, and hydrolysis was observed only for $CF_3CF_2CHCl_2$ and CF_3CHCl_2 under the experimental conditions examined. $CF_3CF_2CHCl_2$ and CF_3CHCl_2 have the common group CHCl_2 in their molecular structures. Whereas the solubility of $CF_3CF_2CHCl_2$ in water at 353 K was four times smaller than that of CF_3CHCl_2 , the hydrolysis rate of $CF_3CF_2CHCl_2$ at 353 K was 10³ larger than that of CF_3CHCl_2 .

From the viewpoint of ODS destruction technology, hydrolysis would not be an effective technique for destruction of CH₃CCl₂F, CH₃CClF₂, CF₃CHClF, or CClF₂CF₂CHClF. For CF₃CHCl₂, the k_{OH^-} value at 353 K is 10³ times smaller than that of CF₃CF₂CHCl₂ or CHClF₂; hence, hydrolysis would not be an effective technique for destruction of CF₃CHCl₂ unless the reaction is accelerated by catalysis.

In contrast, because the k_{OH^-} value at 353 K of CF₃CF₂CHCl₂ is as large as that of CHClF₂, hydrolysis could be a potential technique for destruction of CF₃CF₂CHCl₂ as well as CHClF₂. However, efficient destruction of CF₃CF₂CHCl₂ is currently limited by two outstanding issues that must be addressed in order to effectively destroy CF₃CF₂CHCl₂ via hydrolysis. First, because the $K_{\rm H}$ value at 353 K of CF₃CF₂CHCl₂ is 7 times smaller than that of CHClF₂ (*3*), greater dissolution of CF₃CF₂CHCl₂ in water will be required to achieve an HCFC removal rate similar to that of CHClF₂. Second, because the degradation product CF₃CF₂CCl₂ is formed and remains present throughout the hydrolysis of CF₃CF₂CHCl₂, reaction conditions under which the formation of CF₃CF₂CCl₂ is decreased are required. Alternatively, an additional technique for destroying CF₃CF=CCl₂ are required.

Conclusion

The $K_{\rm H}$ values of six kinds of commercial HCFCs were determined at 313–353 K by means of a phase-ratio variation headspace method. The $K_{\rm H}$ values, in M atm⁻¹, determined at 353 K were 0.0070 ± 0.0006 (CH₃CCl₂F), 0.0038 ± 0.0011 (CH₃CClF₂), 0.0065 ± 0.0007 (CF₃CHCl₂), 0.0026 ± 0.0007 (CF₃CHClF), 0.0016 ± 0.0003 (CF₃CF₂CHCl₂), and 0.0022 ± 0.0004 (CClF₂CF₂CHClF). Errors represent two standard deviations only for the fitting. Values of enthalpy of dissolution in water ranged from –21 to –30 kJ mol⁻¹. The $K_{\rm H}$ values determined for CH₃CClF₂, CF₃CHCl₂, and CF₃CHClF were in agreement with the reported values (*6*, *7*), whereas the $K_{\rm H}$ values determined for CH₃CCl₂F were an order of magnitude larger than the values reported in the literature (*6*). The reported $K_{\rm H}$ values of CH₃CCl₂F might have been underestimated. To the author's knowledge, the data shown here are the first reported $K_{\rm H}$ values for CF₃CF₂CHCl₂ and CClF₂CF₂CHClF.

Hydrolysis was confirmed only for CF₃CF₂CHCl₂ and CF₃CHCl₂ under the reaction conditions examined. Aqueous reactions of CF₃CF₂CHCl₂ with OH⁻ probably proceeded through reversible E1cBtype dehydrofluorination such as CF₃CF₂CHCl₂ + OH⁻ \neq H₂O + [CF₃CF₂CCl₂]⁻ \rightarrow H₂O + CF₃CF=CCl₂ + F⁻. The $k_{OH^-}(T)$ values at 313–353 K were determined to be (0.575 ± 0.043) × exp[-(11300 ± 620) × ($T^{-1} - 1/353$)] M⁻¹ s⁻¹ for CF₃CF₂CHCl₂ and (2.90 ± 0.15) × 10⁻⁴ × exp[-(8770 ± 910) × ($T^{-1} - 1/353$)] M⁻¹ s⁻¹ for CF₃CHCl₂. To the author's knowledge, the data shown here are the first reported $k_{OH^-}(T)$ values for CF₃CF₂CHCl₂ and CF₃CHCl₂.

The k_{OH^-} value at 353 K of CF₃CF₂CHCl₂ was as large as that of CHClF₂; therefore, hydrolysis could be a potential technique for destruction of both CF₃CF₂CHCl₂ and CHClF₂. However, the limited solubility of CF₃CF₂CHCl₂ in water, as well as the formation of the degradation product CF₃CF=CCl₂, must be addressed in order to achieve efficient hydrolysis. The k_{OH^-} value at 353 K of CF₃CHCl₂ was 10³ times smaller than that of CF₃CF₂CHCl₂ or CHClF₂ although the activation energy of the former was lowest among these HCFCs; hence, catalysis may be necessary to apply hydrolysis to destruction of

 CF_3CHCl_2 . Reaction mechanisms for aqueous reactions with OH^- differed between $CF_3CF_2CHCl_2$ and CF_3CHCl_2 : a reversible E1cB-type dehydrofluorination occurred only in aqueous reactions of $CF_3CF_2CHCl_2$ with OH^- .

Acknowledgement

This study was supported by research grants from the Steel Foundation for Environmental Protection Technology, Japan.

REFERENCES

- (1) IPCC/TEAP In IPCC/TEAP Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons. Prepared by Working Group I and III of the Intergovernmental Panel on Climate Change, and the Technology and Economic Assessment Panel; Metz, B., Kuijpers, L., Solomon, S., Andersen, S. O., Davidson, O., Pons, J., de Jager, D., Kestin, T., Manning, M., Meyer, L. A., Eds.; Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2005; p 488.
- (2) UNEP "Handbook for the Montreal Protocol on Substances that Deplete the Ozone Layer 8th Edition," 2009, http://www.unep.ch/ozone/Publications/MP_Handbook/MP-Handbook-2009.pdf
- (3) Kutsuna, S.; Hori, H.; Naganuma, M.; Shimono, A. International Journal of Chemical Kinetics 2011, 43, 639-647.
- (4) Ettre, L.; Welter, C.; Kolb, B. Chromatographia 1993, 35, 73-84.
- (5) Chai, X.-S.; Falabella, J. B.; Teja, A. S. Fluid Phase Equilibria 2005, 231, 239-245.
- (6) McLinden, M. O. Physical properties. In vol. II, Appendix AFEAS report, WMO Global Ozone Res. Monit. Proj. Rep. 20; WMO: Geneva, 1989; pp 10-38.
- (7) Chang, W.-K.; Criddle, C. S. Biodegradation 1995, 6, 1-9.
- (8) Banks, R. E.; Barlow M. G.; Nickkho-Amiry M. J. Fluorine Chemistry 1997, 82, 171-174.
- (9) Amii, H.; Uneyama, K. Chemical Review 2009, 100, 2119-2183.
- (10) Bartsch, R. A.; Závada, J. Chemical Review 1980, 80, 453-494.
- (11) Washington, J. W. Ground Water 1996, 34, 709-718.
- (12) Spillane, W. J.; McGrath, P.; Brack, C.; Barry, K. Chemical Communication, 1998, 1017-1018.
- (13) Nome, F.; Erbs, W.; Correia, V. R. Journal of Organic Chemistry, 1981, 46, 3802-3804.
- (14) Vigroux, A.; Bergon, M.; Bergonzi, C.; Tisnès, P. Journal of the American Chemical Society, 1994, 116, 11787-11796.

		This study		Literature data		
HCFCs	$K_{ m H}$ (N	/I atm ⁻¹)	$\Delta H_{ m sol}$	<i>K</i> _H (298)	$\Delta H_{ m sol}$	Def
	298 K	353 K	(kJ mol ⁻¹)	$(M atm^{-1})$	(kJ mol ⁻¹)	Kel.
CH ₃ CCl ₂ F	0.030 ± 0.002	0.0070 ± 0.0006	-23 ± 2	0.008	-44	6
CH ₃ CClF ₂	0.015 ± 0.007	0.0038 ± 0.0011	-22 ± 10	0.014	-21	6
				0.016	-25	7
CF ₃ CHCl ₂	0.023 ± 0.003	0.0065 ± 0.0007	-21 ± 3	0.029	-21	6
				0.034	-28	7
CF ₃ CHClF	0.011 ± 0.003	0.0026 ± 0.0007	-23 ± 8	0.011	-27	6
CF ₃ CF ₂ CHCl ₂	0.010 ± 0.002	0.0016 ± 0.0003	-30 ± 4			
CClF ₂ CF ₂ CHClF	0.011 ± 0.002	0.0022 ± 0.0003	-25 ± 4			

Table I. Henry's law constants of HCFCs: parameters deduced from fitting the $K_{\rm H}$ values obtained in this study with Eq. 3. The corresponding values in the literature are also listed.

Table II. Rate constants (k_{OH^-}) for aqueous reactions of CF₃CF₂CHCl₂ and CF₃CHCl₂ with OH⁻, determined from Eqs. 4' and 8 at five temperatures, and values extrapolated to 298 K, along with activation energies ΔE_a .

	$k_{\rm OH^-} (10^{-3} \rm M^{-1} \rm s^{-1})$					
<i>T</i> (K)	CF ₃ CF	2CHCl ₂	CF ₃ C	HCl ₂		
	From Eq. 4'	From Eq. 8	From Eq. 4'	From Eq. 8		
353	651.2 ± 54.4	569.6 ± 48.5	0.332 ± 0.017	0.284 ± 0.015		
343	293.4 ± 22.8	228.0 ± 20.7	0.201 ± 0.009	0.152 ± 0.011		
333	126.6 ± 7.8	84.9 ± 6.7	0.069 ± 0.012	0.048 ± 0.017		
323	51.5 ± 6.8	26.7 ± 7.8	0.022 ± 0.020	0.016 ± 0.018		
313	24.9 ± 10.4	9.2 ± 13.3	0.020 ± 0.014	0.006 ± 0.025		
298	4.3 ± 0.8	1.6 ± 0.4	0.006 ± 0.002	0.003 ± 0.001		
$\Delta E_a (\mathrm{kJ} \mathrm{mol}^{-1})$	79.6 ± 4.0	93.9 ± 5.1	64.5 ± 5.0	72.9 ± 7.5		

Figure 1. Temperature dependence of Henry's law constants (K_H) determined at 313–353 K: (panel A) CH₃CCl₂F and CH₃CClF₂; (panel B) CF₃CHCl₂ and CF₃CHClF. Bold lines were obtained by nonlinear fitting of the data with respect to Eq. 3. Dashed and dotted lines were obtained on the basis of the data reported in the literature: dashed lines, Ref. 6; dotted lines, Ref. 7.

Figure 2. Temperature dependence of Henry's law constants (K_H) determined at 313–353 K: (panel A) CF₃CF₂CHCl₂; (panel B) CClF₂CF₂CHClF. Bold lines were obtained by nonlinear fitting of the data with respect to Eq. 3. The data at 328, 338 and 353 K are the average obtained in two experimental determinations at each temperature (gray open square symbols and error bars).

Figure 3. Semi-log plots of relative headspace partial pressure of each HCFC against headspace equilibrium time duration (t_h) at 353 K for $V_i = 9.0$ cm³ of 1 M aqueous NaOH.

Figure 4. Aqueous reactions of CF₃CF₂CHCl₂ with OH⁻ at 353 K. (panel A) Headspace partial pressure of CF₃CF₂CHCl₂ over 9 cm³ of 1–4 mM aqueous NaOH versus t_h (open symbols) or t_m (closed symbols). (panel B) $k_1^{(l)}$, which were deduced from the data in panels A by Eq. 4' (open symbols) and Eq. 8 (closed symbols), versus the NaOH concentration.

Figure 5. Temperature dependence of the k_{OH^-} values of CF₃CF₂CHCl₂ (circles) and CF₃CHCl₂ (squares). Open symbols represent the k_{OH^-} values deduced by use of Eq. 4'. Closed symbols represent the k_{OH^-} values, which considered hydrolysis at room temperature, deduced by used of Eq. 8. Dashed and bold lines were obtained by nonlinear fitting of the data with weighting (error)⁻² with respect to Eq. 11.

Figure 6. (panel A) FID signal intensities of a degradation product, denoted *product X*, and ddecay of CF₃CF₂CHCl₂ at headspace time duration of t_h . Headspace test samples containing 9 cm³ of 1 or 2 M aqueous NaOH were used for FID-GC measurements. $S_X(t_h)$ and $\Delta S_{\text{HCFC-225ca}}(t_h)$ represent FID signal intensity of a degradation product and decrease in FID signal intensity of CF₃CF₂CHCl₂, respectively, at headspace time duration of t_h . (panel B) Mass spectrum of *product X*, which was a degradation product of aqueous reactions of CF₃CF₂CHCl₂ with OH⁻ at 353 K, measured by use of GC-MS.

Supporting Information

1. Time for equilibration

The time to attain equilibration between the headspace and the aqueous solution was obtained by analyzing the headspaces over test samples as a function of headspace time duration until steady state conditions were attained. Figure S1 plots relative peak area of the GC-MS signal versus headspace time duration for each series of test samples.

Figure S1. Relative peak area of GC-MS signal vs. headspace time duration for equilibrating 9.0 cm³ volumes of aqueous solutions of each HCFC at 353 K.

2. Analytical conditions of GC-MS

Table S1 lists the analytical conditions of the selected-ion and the column temperature for each HCFC in GC-MS measurements.

LICEC	Selected ion	Colu	Retention time		
HCFC	(m/z)	Initial (duration)	ial (duration) Rising rate (K min ⁻¹)		(min)
PoraBOND-Q					
CH ₃ CCl ₂ F	$CH_3CClF^+(81)$	393 (2 min)	20	453	9.6
CH ₃ CClF ₂	$CH_{3}CF_{2}^{+}(65)$	313 (3 min)	10	473	14.4
CF ₃ CHCl ₂	$CHCl_{2^{+}}(83)$	393 (2 min)	20	453	9.5
CF ₃ CHClF	CHClF ⁺ (67)	313 (3 min)	10	473	14.6
CF ₃ CF ₂ CHCl ₂	$CHCl_{2^{+}}(83)$	393 (2 min)	20	493	10.01
CClF ₂ CF ₂ CHClF	CHClF ⁺ (67)	393 (2 min)	20	493	10.18
Rts-1					
CF ₃ CF ₂ CHCl ₂	$CF_{3}^{+}(69)$	308 (12 min)	0	308	8.6
CClF ₂ CF ₂ CHClF	$CCl_{2}F^{+}(85)$	308 (12 min)	0	308	9.4

Table S1. Analytical conditions of GC-MS (selected ion and column temperature control)

3. Linear regression of plots of reciprocal L_i versus phase-ratio with Eq. 3

Fig. S2 shows plots of S_{ij} versus v_j (panel A) and a plot of L_i^{-1} versus V_i / V (panel B) for samples of CH₃CCl₂F at 343 K as an example for determining the Henry's law constant by use of Eqs 2 and 3.

Figure S2. Headspace GC-MS measurements for six series of test samples containing water (V_i cm³) and CH₃CCl₂F (v_j cm³) at 343 K. (A) Peak area (S_{ij}) versus v_j for test samples containing each volume (V_i) of water. Slope L_i was obtained by linear fitting of the data with respect to Eq. 2 for samples of the same V_i . (B) Plot of L_i^{-1} against V_i / V with respect to Eq. 3.

4. Henry's law constants of HCFCs obtained at 353-313 K by use of Eq. 3

Tables S2, S3, S4, S5, S6 and S7 list the values for CH₃CCl₂F, CH₃CClF₂, CF₃CHCl₂, CF₃CHCl₂, CF₃CHCl₇, CF₃CF₂CHCl₂, CClF₂CF₂CHClF, respectively, of reciprocal L_i values, slopes and intercepts and correlation coefficients (r^2) for linear regression of plots of reciprocal L_i versus phase ratio (V_i/V) with weighting (error)⁻² with respect to Eq. 3, and Henry's law constants (K_H) calculated from the slopes and intercepts. The data were obtained by intervals of 10 K. The average K_H values obtained in four experimental determinations with weighting (error)⁻² at each temperature were listed for CF₃CF₂CHCl₂ (Table S6) and CClF₂CF₂CHClF (Table S7).

Table S2. L_i^{-1} , and slopes, intercepts and correlation coefficients for linear regression of plots of L_i^{-1} versus phase ratio with respect to Eq. 3, and $K_{\rm H}$ for CH₃CCl₂F at 313–353 K.

<i>T</i> (K)	353	343	333	323	313
$L_i^{-1}(10^{-5} \text{ a.u.})$					
$V_i = 9.0$	2.102 ± 0.020	1.943 ± 0.025	1.974 ± 0.021	1.995 ± 0.020	1.993 ± 0.006
$V_i = 7.5$	2.273 ± 0.038	2.080 ± 0.029	2.078 ± 0.019	2.099 ± 0.006	2.112 ± 0.022
$V_i = 6.0$	2.427 ± 0.044	2.226 ± 0.019	2.241 ± 0.018	2.232 ± 0.006	2.178 ± 0.019
$V_i = 4.5$	2.620 ± 0.042	2.391 ± 0.031	2.337 ± 0.041	2.319 ± 0.016	2.259 ± 0.019
$V_i = 3.0$	2.834 ± 0.012	2.516 ± 0.054	2.495 ± 0.025	2.449 ± 0.014	2.358 ± 0.020
$V_i = 1.5$	2.982 ± 0.036	2.677 ± 0.019	2.621 ± 0.027	2.543 ± 0.018	2.449 ± 0.021
Slope (10 ⁻⁵ a.u.)	-2.601 ± 0.077	-2.109 ± 0.081	-1.879 ± 0.082	-1.616 ± 0.048	-1.296 ± 0.046
Intercept (10 ⁻⁵ a.u.)	3.191 ± 0.019	2.823 ± 0.022	2.755 ± 0.024	2.675 ± 0.014	2.540 ± 0.017
r^2	0.99829	0.99944	0.99622	0.99311	0.99785
$K_{\rm H}$ (M atm ⁻¹)	0.0064 ± 0.0008	0.0090 ± 0.0010	0.0116 ± 0.0011	0.0149 ± 0.0007	0.0191 ± 0.0007

Table S3. L_i^{-1} , and slopes, intercepts and correlation coefficients for linear regression of plots of L_i^{-1} versus phase ratio with respect to Eq. 3, and $K_{\rm H}$ for CH₃CClF₂ at 313–353 K.

$T(\mathbf{K})$	353	343	333	323	313
$L_i^{-1}(10^{-5} \text{ a.u.})$					
$V_i = 9.0$	1.044 ± 0.015	0.952 ± 0.011	2.715 ± 0.074	1.001 ± 0.060	2.147 ± 0.022
$V_i = 7.5$	1.137 ± 0.019	1.045 ± 0.029	2.959 ± 0.098	1.073 ± 0.048	2.323 ± 0.031
$V_i = 6.0$	1.253 ± 0.016	1.145 ± 0.025	3.187 ± 0.168	1.145 ± 0.046	2.463 ± 0.039
$V_i = 4.5$	1.349 ± 0.021	1.228 ± 0.026	3.388 ± 0.170	1.224 ± 0.052	2.624 ± 0.042
$V_i = 3.0$	1.449 ± 0.032	1.324 ± 0.019	3.690 ± 0.140	1.313 ± 0.058	2.831 ± 0.037
$V_i = 1.5$	1.565 ± 0.026	1.410 ± 0.027	3.907 ± 0.142	1.421 ± 0.071	2.970 ± 0.049
Slope (10 ⁻⁵ a.u.)	-1.479 ± 0.071	-1.318 ± 0.061	-3.403 ± 0.374	-1.168 ± 0.207	-2.368 ± 0.225
Intercept (10 ⁻⁵ a.u.)	1.664 ± 0.022	1.507 ± 0.020	4.165 ± 0.125	1.480 ± 0.058	3.143 ± 0.074
r^2	0.99909	0.9997	0.99892	0.99316	0.99813
$K_{\rm H}$ (M atm ⁻¹)	0.0038 ± 0.0015	0.0045 ± 0.0015	0.0066 ± 0.0034	0.0080 ± 0.0054	0.0096 ± 0.0029

$T(\mathbf{K})$	353	343	333	323	313
$L_i^{-1}(10^{-5} \text{ a.u.})$					
$V_i = 9.0$	1.489 ± 0.020	1.411 ± 0.017	1.792 ± 0.016	0.956 ± 0.008	0.936 ± 0.006
$V_i = 7.5$	1.593 ± 0.031	1.496 ± 0.023	1.915 ± 0.028	1.028 ± 0.005	0.998 ± 0.013
$V_i = 6.0$	1.747 ± 0.017	1.622 ± 0.012	2.076 ± 0.005	1.087 ± 0.008	1.051 ± 0.009
$V_i = 4.5$	1.851 ± 0.035	1.735 ± 0.022	2.190 ± 0.016	1.142 ± 0.009	1.102 ± 0.018
$V_i = 3.0$	2.010 ± 0.025	1.845 ± 0.015	2.329 ± 0.017	1.211 ± 0.015	1.145 ± 0.009
$V_i = 1.5$	2.162 ± 0.068	1.997 ± 0.025	2.470 ± 0.022	1.273 ± 0.007	1.201 ± 0.017
Slope (10 ⁻⁵ a.u.)	-1.866 ± 0.102	-1.627 ± 0.065	-1.905 ± 0.062	-0.887 ± 0.025	-0.755 ± 0.033
Intercept (10 ⁻⁵ a.u.)	2.267 ± 0.031	2.081 ± 0.018	2.605 ± 0.017	1.335 ± 0.007	1.256 ± 0.011
r^2	0.99641	0.99526	0.99663	0.99874	0.99727
$K_{\rm H}$ (M atm ⁻¹)	0.0061 ± 0.0016	0.0078 ± 0.0011	0.0098 ± 0.0009	0.0127 ± 0.0007	0.0155 ± 0.0010

Table S4. L_i^{-1} , and slopes, intercepts and correlation coefficients for linear regression of plots of L_i^{-1} versus phase ratio with respect to Eq. 3, and $K_{\rm H}$ for CF₃CHCl₂ at 313–353 K.

Table S5. L_i^{-1} , and slopes, intercepts and correlation coefficients for linear regression of plots of L_i^{-1} versus phase ratio with respect to Eq. 3, and $K_{\rm H}$ for CF₃CHClF at 313–353 K.

<i>T</i> (K)	353	343	333	323	313
$L_i^{-1}(10^{-5} \text{ a.u.})$					
$V_i = 9.0$	1.120 ± 0.023	0.954 ± 0.011	0.889 ± 0.014	0.836 ± 0.007	0.753 ± 0.008
$V_i = 7.5$	1.221 ± 0.021	1.052 ± 0.012	0.977 ± 0.018	0.927 ± 0.008	0.826 ± 0.019
$V_i = 6.0$	1.331 ± 0.022	1.149 ± 0.008	1.066 ± 0.022	1.007 ± 0.013	0.907 ± 0.016
$V_i = 4.5$	1.465 ± 0.009	1.252 ± 0.023	1.141 ± 0.018	1.085 ± 0.018	0.948 ± 0.009
$V_i = 3.0$	1.569 ± 0.020	1.340 ± 0.011	1.226 ± 0.014	1.162 ± 0.013	1.037 ± 0.025
$V_i = 1.5$	1.715 ± 0.023	1.445 ± 0.021	1.329 ± 0.013	1.241 ± 0.007	1.084 ± 0.004
Slope (10 ⁻⁵ a.u.)	-1.693 ± 0.075	-1.385 ± 0.047	-1.239 ± 0.048	-1.149 ± 0.027	-0.939 ± 0.024
Intercept (10 ⁻⁵ a.u.)	1.819 ± 0.018	1.537 ± 0.014	1.409 ± 0.013	1.323 ± 0.008	1.150 ± 0.005
r^2	0.99691	0.99978	0.99851	0.99933	0.9984
$K_{\rm H}$ (M atm ⁻¹)	0.0024 ± 0.0015	0.0035 ± 0.011	0.0044 ± 0.0013	0.0050 ± 0.0008	0.0072 ± 0.0008

$T(\mathbf{K})$			353		
$L_{i}^{-1}(10^{-5} a \mathrm{u})$					
$\frac{-1}{V} = 0.0$	$=$ 2.012 \pm 0.020	2.045 ± 0.040	2.181 ± 0.020	2.638 ± 0.022	
$V_i = 9.0$	5.013 ± 0.029	2.943 ± 0.040	2.181 ± 0.039	2.038 ± 0.022	
$V_i = 7.5$	3.358 ± 0.056	3.289 ± 0.030	2.366 ± 0.030	2.852 ± 0.040	
$V_i = 6.0$	3.672 ± 0.007	3.582 ± 0.048	2.593 ± 0.023	3.191 ± 0.019	
V = 4.5	4.007 ± 0.053	3882 ± 0.034	2812 ± 0.009	3.469 ± 0.022	
$v_i = 4.5$	4.007 ± 0.033	5.882 ± 0.054	2.812 ± 0.009	3.409 ± 0.022	
$V_i = 3.0$	4.335 ± 0.0037	4.198 ± 0.014	3.078 ± 0.046	3.780 ± 0.024	
$V_i = 1.5$	4.698 ± 0.052	4.578 ± 0.008	3.350 ± 0.039	4.083 ± 0.017	
Slope	-4.755 ± 0.133	-4.695 ± 0.076	-3317 ± 0125	-4.167 ± 0.145	-
biope	4.755 ± 0.155	4.005 ± 0.070	3.517 ± 0.123	4.107 ± 0.145	
Intercept	5.006 ± 0.0377	4.896 ± 0.011	3.530 ± 0.033	4.365 ± 0.036	
r^2	0.9997	0.9967	0.9935	0.9987	average
$K_{\rm H}$ (M atm ⁻¹)	0.00173 ± 0.00095	0.00142 ± 0.00054	0.00208 ± 0.00126	0.00156 ± 0.00118	0.00156 ± 0.00041
m _H (in unit)	0.00179 = 0.00075	0.00112 = 0.00001	0.00200 = 0.00120	0.00120 = 0.00110	0.00120 = 0.00011
			2.12		
<i>T</i> (K)			343		
$L_i^{-1}(10^{-5} \text{ a.u.})$					
$V_{\cdot} = 9.0$	2581 ± 0.025	1.519 ± 0.016	1.478 ± 0.033	1.485 ± 0.017	
$V_{i} = 7.5$	2.057 ± 0.025	1.519 = 0.010	1.170 ± 0.033	1.105 = 0.017	
$V_i = 7.5$	2.957 ± 0.035	1.015 ± 0.014	1.619 ± 0.020	1.038 ± 0.013	
$V_i = 6.0$	3.207 ± 0.035	1.792 ± 0.026	1.768 ± 0.018	1.788 ± 0.018	
$V_{1} = 4.5$	3540 ± 0.081	1.964 ± 0.020	1.939 ± 0.004	1.951 ± 0.016	
$V_{l} = 2.0$	2.705 ± 0.015	2.102 ± 0.010	2.104 ± 0.012	2.108 ± 0.015	
$V_i = 3.0$	3.795 ± 0.015	2.103 ± 0.010	2.104 ± 0.012	2.108 ± 0.015	
$V_i = 1.5$	4.081 ± 0.025	2.280 ± 0.028	2.242 ± 0.024	2.249 ± 0.023	
Slope	-4.235 ± 0.083	-2.191 ± 0.056	-2.265 ± 0.076	-2.209 ± 0.060	-
Intercont	4388 ± 0.020	$2/12 \pm 0.015$	2.415 ± 0.016	$2 / 12 \pm 0.017$	
mercept	4.300 ± 0.020	2.412 ± 0.013	2.413 ± 0.010	2.413 ± 0.017	
r²	0.9985	0.9946	0.9985	0.9997	average
$K_{\rm H}$ (M atm ⁻¹)	0.00124 ± 0.00069	0.00326 ± 0.00085	0.00221 ± 0.00114	0.00300 ± 0.00091	0.00228 ± 0.00043
$T(\mathbf{V})$			222		
<i>I</i> (K)			333		
$L_i^{-1}(10^{-5} \text{ a.u.})$					
$V_i = 9.0$	2.517 ± 0.041	3.025 ± 0.068	2.794 ± 0.054	1.370 ± 0.010	
V = 7.5	2.762 ± 0.002	2.208 ± 0.050	2.099 ± 0.012	1.506 ± 0.012	
$V_i = 7.5$	2.762 ± 0.002	3.308 ± 0.030	3.088 ± 0.013	1.506 ± 0.013	
$V_i = 6.0$	3.007 ± 0.018	3.767 ± 0.094	3.451 ± 0.087	1.641 ± 0.019	
$V_i = 4.5$	3.343 ± 0.022	3.969 ± 0.129	3.685 ± 0.023	1.803 ± 0.008	
V = 3.0	3580 ± 0.030	4220 ± 0.020	3.957 ± 0.025	1.934 ± 0.032	
$V_i = 3.0$	3.380 ± 0.030	4.220 ± 0.020	3.937 ± 0.023	1.934 ± 0.032	
$V_i = 1.5$	3.858 ± 0.034	4.557 ± 0.068	4.266 ± 0.043	2.101 ± 0.027	_
Slope	-3.914 ± 0.076	-4.272 ± 0.178	-4.180 ± 0.100	-2.071 ± 0.052	-
Intercent	4.134 ± 0.026	4.826 ± 0.068	4.555 ± 0.029	2237 ± 0.016	
	4.134 ± 0.020	4.820 ± 0.008	4.333 ± 0.029	2.237 ± 0.010	
r ²	0.9980	0.9952	0.9995	0.9992	average
$K_{\rm H}$ (M atm ⁻¹)	0.00195 ± 0.00071	0.00419 ± 0.00137	0.00301 ± 0.00083	0.00272 ± 0.00088	0.00265 ± 0.0044
$T(\mathbf{V})$			222		
<u>I (K)</u>			323		
$L_i^{-1}(10^{-5} \text{ a.u.})$					
$V_i = 9.0$	2.425 ± 0.020	2.475 ± 0.061	1.391 ± 0.020	1.341 ± 0.026	
V = 7.5	2.724 ± 0.051	2.664 ± 0.055	1.557 ± 0.023	1.504 ± 0.012	
$v_i = 1.5$	2.734 ± 0.031	2.004 ± 0.000	1.337 ± 0.023	1.504 ± 0.015	
$V_i = 6.0$	2.966 ± 0.024	2.978 ± 0.071	1.685 ± 0.030	1.621 ± 0.032	
$V_i = 4.5$	3.214 ± 0.037	3.162 ± 0.046	1.795 ± 0.023	1.752 ± 0.025	
$V_{.} = 3.0$	3.427 ± 0.032	3351 ± 0.006	1.940 ± 0.028	1.869 ± 0.006	
$r_i = 5.0$	3.727 ± 0.032	2.07 ± 0.070	1.770 ± 0.020	1.007 ± 0.000	
$V_i = 1.5$	3.734 ± 0.032	$3.60 / \pm 0.102$	$2.0/9 \pm 0.028$	2.017 ± 0.025	
Slope	-3.673 ± 0.092	-3.274 ± 0.254	-1.927 ± 0.082	-1.796 ± 0.056	
Intercent	3.979 ± 0.028	3844 ± 0074	2.212 ± 0.024	2.123 ± 0.012	
-2	0.0082	0.0027	0.0072	2.125 = 0.012	
r	0.9982	0.9937	0.9975	0.9976	average
$K_{\rm H} ({\rm M \ atm^{-1}})$	0.00290 ± 0.00091	0.00560 ± 0.00257	0.00487 ± 0.00144	0.00581 ± 0.00101	0.0439 ± 0.0060
				-	-
$T(\mathbf{K})$	•		313		
$\frac{1}{1}$ (K)			515		
L_i (10 ⁻⁵ a.u.)	-				
$V_i = 9.0$	2.405 ± 0.049	2.847 ± 0.065	3.104 ± 0.054	1.347 ± 0.008	
$V_{.} = 7.5$	2.648 ± 0.027	3.071 ± 0.129	3414 ± 0.022	1.471 ± 0.016	
$r_i = r.5$	2.040 ± 0.027	2.202 ± 0.122	3.717 ± 0.022	1.771 ± 0.010	
$V_i = 6.0$	2.868 ± 0.021	3.302 ± 0.123	$3./36 \pm 0.053$	1.598 ± 0.022	
$V_i = 4.5$	3.074 ± 0.028	3.614 ± 0.088	4.000 ± 0.060	1.720 ± 0.022	
$V_{i} = 3.0$	3347 ± 0.038	3886 ± 0.087	4299 ± 0103	1.852 ± 0.013	
$r_1 = 5.0$	2.597 ± 0.000	4.100 ± 0.007	4.200 ± 0.100	1.052 ± 0.015	
$v_i = 1.5$	3.382 ± 0.039	4.100 ± 0.117	4.569 ± 0.052	1.965 ± 0.009	-
Slope		0 (5() 0 000	$4.1(6 \pm 0.170)$	1.771 ± 0.022	
· · · · ·	-3.314 ± 0.130	-3.656 ± 0.298	$-4.100 \pm 0.1/0$	-1.771 ± 0.032	
Intercent	-3.314 ± 0.130 3 798 ± 0.035	-3.656 ± 0.298 4 376 ± 0.089	-4.166 ± 0.170 4.874 ± 0.054	-1.771 ± 0.032 2.092 ± 0.010	
Intercept	-3.314 ± 0.130 3.798 ± 0.035	-3.656 ± 0.298 4.376 ± 0.089	-4.166 ± 0.170 4.874 ± 0.054	-1.771 ± 0.032 2.092 ± 0.010	
Intercept r^2	$-3.314 \pm 0.130 \\ 3.798 \pm 0.035 \\ 0.9978$	$-3.656 \pm 0.298 4.376 \pm 0.089 0.9979$	-4.166 ± 0.170 4.874 ± 0.054 0.9992	$ \begin{array}{c} -1.771 \pm 0.032 \\ 2.092 \pm 0.010 \\ 0.9998 \end{array} $	average

Table S6. L_i^{-1} , and slopes, intercepts and correlation coefficients for linear regression of plots of L_i^{-1} versus phase ratio with respect to Eq. 3, and $K_{\rm H}$ for CF₃CF₂CHCl₂ at 313–353 K.

$T(\mathbf{K})$			353		
$L_i^{-1}(10^{-5} \text{ a.u.})$					
$V_i = 9.0$	3.734 ± 0.023	3.644 ± 0.046	2.325 ± 0.036	2.777 ± 0.047	
$V_{1} = 7.5$	4.159 ± 0.071	4.048 ± 0.045	2.512 ± 0.034	2.998 ± 0.086	
$V_1 = 6.0$	4.558 ± 0.006	4.407 ± 0.057	2.749 ± 0.023	3.347 ± 0.043	
$V_i = 0.0$ $V_i = 4.5$	4.052 ± 0.000	4.772 ± 0.031	2.749 ± 0.023 2.074 ± 0.021	3.547 ± 0.043	
$V_i = 4.5$	4.932 ± 0.033	4.773 ± 0.031	2.974 ± 0.021	3.041 ± 0.043	
$V_i = 3.0$	5.358 ± 0.047	5.169 ± 0.028	3.253 ± 0.044	3.965 ± 0.052	
$V_i = 1.5$	5.805 ± 0.094	5.646 ± 0.039	3.539 ± 0.034	4.265 ± 0.035	-
Slope	-5.841 ± 0.139	-5.583 ± 0.140	-3.466 ± 0.119	-4.295 ± 0.153	
Intercept	6.195 ± 0.040	5.976 ± 0.033	3.731 ± 0.032	4.559 ± 0.019	
r^2	0.9998	0.9971	0.9926	0.9989	average
$K_{\rm H}$ (M atm ⁻¹)	0.00197 ± 0.00080	0.00227 ± 0.00083	0.00245 ± 0.00113	0.00200 ± 0.00118	0.00216 ± 0.00047
$T(\mathbf{K})$			343		
$L^{-1}(10^{-5} a \mu)$					
$\frac{D_l^{-1}(10^{\circ} \text{ a.u.})}{V_{-1} = 9.0}$	3202 ± 0.053	1.503 ± 0.014	1.460 ± 0.035	1.475 ± 0.018	
$V_i = 7.0$ $V_i = 7.5$	3.202 ± 0.000	1.505 ± 0.014 1.586 ± 0.015	1.400 ± 0.000	1.475 ± 0.015 1.624 ± 0.015	
$V_i = 7.3$	3.033 ± 0.041	1.360 ± 0.013	1.393 ± 0.010	1.024 ± 0.013	
$V_i = 6.0$	3.954 ± 0.051	1.766 ± 0.028	$1./41 \pm 0.022$	1.769 ± 0.020	
$V_i = 4.5$	4.369 ± 0.100	1.930 ± 0.025	1.902 ± 0.011	1.929 ± 0.016	
$V_i = 3.0$	4.690 ± 0.028	2.066 ± 0.009	2.063 ± 0.013	2.075 ± 0.015	
$V_i = 1.5$	5.033 ± 0.034	2.236 ± 0.033	2.198 ± 0.023	2.214 ± 0.027	
Slope	-5.105 ± 0.138	-2.100 ± 0.051	-2.181 ± 0.074	-2.134 ± 0.064	-
Intercept	5.402 ± 0.033	2.360 ± 0.013	2.361 ± 0.017	2.373 ± 0.018	
r ²	0.9983	0.9939	0,9990	0.9997	average
K (M atm ⁻¹)	0.00195 ± 0.00093	0.99999	0.00072 ± 0.00113	0.00356 ± 0.00000	1000000000000000000000000000000000000
K _H (M aun)	0.00195 ± 0.00095	0.00391 ± 0.00079	0.00272 ± 0.00113	0.00000 ± 0.000099	0.00515 ± 0.00047
$T(\mathbf{K})$	-		333		
$\frac{I(\mathbf{K})}{I^{-1}(10^{-5} \text{ am})}$	_		555		
$\frac{L_i (10 \text{ a.u.})}{V = 0.0}$	2 1 (2 + 0.05(2 252 + 0.075	$2.021 \pm 0.0(1$	1 255 + 0 000	
$V_i = 9.0$	3.162 ± 0.056	3.352 ± 0.075	3.031 ± 0.001	1.355 ± 0.009	
$V_i = 7.5$	3.452 ± 0.012	3.656 ± 0.055	3.337 ± 0.013	1.489 ± 0.013	
$V_i = 6.0$	3.770 ± 0.022	4.152 ± 0.095	3.744 ± 0.061	1.619 ± 0.020	
$V_i = 4.5$	4.156 ± 0.041	4.366 ± 0.143	3.967 ± 0.035	1.777 ± 0.007	
$V_i = 3.0$	4.460 ± 0.040	4.630 ± 0.023	4.250 ± 0.027	1.904 ± 0.035	
$V_i = 1.5$	4.778 ± 0.038	4.999 ± 0.070	4.583 ± 0.038	2.067 ± 0.029	
Slope	-4.747 ± 0.113	-4.567 ± 0.194	-4.401 ± 0.103	-2.013 ± 0.048	-
Intercept	5.117 ± 0.035	5280 ± 0.068	4880 ± 0.031	2.199 ± 0.015	
r ²	0.9989	0 9940	0 9994	0 9994	average
K (M atm ⁻¹)	0.00264 ± 0.00084	0.9940 0.00494 ± 0.00136	0.9994 0.00350 ± 0.00080	0.00310 ± 0.00083	1000000000000000000000000000000000000
K _H (Wi auni)	0.00204 ± 0.00084	0.00494 ± 0.00130	0.00339 ± 0.00080	0.00510 ± 0.00085	0.00332 ± 0.0043
$T(\mathbf{K})$			323		
$\frac{I(\mathbf{K})}{I^{-1}(10^{-5} \text{ a m})}$	_		525		
L_i (10 a.u.)		272(+0.0)7	1 270 + 0 014	1 240 + 0.020	
$V_i = 9.0$	2.989 ± 0.023	$2./26 \pm 0.06/$	$1.3/0 \pm 0.014$	1.340 ± 0.030	
$V_i = 7.5$	3.374 ± 0.077	2.911 ± 0.057	1.539 ± 0.024	1.506 ± 0.014	
$V_i = 6.0$	3.649 ± 0.031	3.249 ± 0.080	1.660 ± 0.032	1.612 ± 0.035	
$V_i = 4.5$	3.933 ± 0.036	3.436 ± 0.052	1.760 ± 0.021	1.738 ± 0.031	
$V_i = 3.0$	4.210 ± 0.043	3.640 ± 0.106	1.900 ± 0.030	1.851 ± 0.006	
$V_i = 1.5$	4.556 ± 0.063	3.912 ± 0.128	2.035 ± 0.027	1.996 ± 0.031	
Slope	-4.431 ± 0.127	-3.437 ± 0.287	-1.871 ± 0.072	-1.703 ± 0.059	-
Intercent	4864 ± 0.041	4.154 ± 0.086	2.165 ± 0.023	2.091 ± 0.012	
²	0.0081	0.0010	0.0063	0.0067	average
V (M stm ⁻¹)	0.9901	0.3313	0.9903	0.3307	
\mathbf{A}_{H} (M atm)	0.00336 ± 0.00102	0.00051 ± 0.00269	0.00512 ± 0.00130	$0.00/00 \pm 0.00108$	$0.051/\pm 0.0003$
T(V)			212		
$\frac{I(\mathbf{K})}{I^{-1}(10^{-5} \text{ am})}$	_		515		-
L_i (10 a.u.)		2.110 ± 0.000	2 202 1 0 050	1 250 + 0.010	
$v_i = 9.0$	2.032 ± 0.039	5.119 ± 0.009	5.383 ± 0.056	1.350 ± 0.010	
$V_i = 7.5$	2.208 ± 0.031	3.350 ± 0.136	3.702 ± 0.022	1.470 ± 0.017	
$V_i = 6.0$	2.361 ± 0.020	3.585 ± 0.135	4.046 ± 0.057	1.595 ± 0.024	
$V_i = 4.5$	2.553 ± 0.051	3.916 ± 0.093	4.317 ± 0.064	1.712 ± 0.023	
$V_i = 3.0$	2.777 ± 0.030	4.204 ± 0.093	4.625 ± 0.113	1.839 ± 0.014	
$V_{i} = 1.5$	2.965 ± 0.047	4.434 ± 0.121	4.915 ± 0.054	1.949 ± 0.010	
Slope	-2.696 ± 0.130	-3823 + 0313	-4 366 + 0 178	-1.717 + 0.037	-
Intercent	$3,138 \pm 0.026$	4.716 ± 0.004	5.234 ± 0.057	2.073 ± 0.011	
2	0.0045	A 0070	0.207 ± 0.007	0.000	01/070.00
$r \rightarrow r$	0.00540 + 0.00166	0.77/0	0.7771	0.7770	
$K_{\rm H}$ (M atm ⁻¹)	0.00548 ± 0.00166	$0.00/37 \pm 0.00265$	0.00645 ± 0.00137	0.00668 ± 0.00072	0.00653 ± 0.00058

Table S7. L_i^{-1} , and slopes, intercepts and correlation coefficients for linear regression of plots of L_i^{-1} versus phase ratio with respect to Eq. 3, and $K_{\rm H}$ for CClF₂CF₂CHClF at 313–353 K.

5. Change as a function of headspace time duration of headspace partial pressures of CH₃CCl₂F, CH₃CClF₂, CF₃CHClF and CClF₂CF₂CHClF over 1M aqueous NaOH at 353 K

Fig. S3 shows change in relative headspace partial pressure of CH₃CCl₂F, CH₃CClF₂, CF₃CHClF and CClF₂CF₂CHClF with headspace equilibrium time duration (t_h) at 353 K for $V_i = 9.0$ cm³ of 1 M aqueous NaOH.

Figure S3. Change of relative headspace partial pressure of HCFC as a function of headspace equilibrium time duration (*t*_h) at 353 K for $V_i = 9.0$ cm³ of 1 M aqueous NaOH.

6. Determination of rate constants for aqueous reactions with OH⁻ of CF₃CF₂CHCl₂ and CF₃CHCl₂

Panels A in Figs. S4 and S5 show plots of P_t/P_{60} of CF₃CF₂CHCl₂ and CF₃CHCl₂, respectively, against t_h or t_m over prescribed concentrations of aqueous NaOH at 313–343 K. Panels B in Figs. S4 and S5 show plots of $k_1^{(1)}$, which were deduced from the data in panels A by Eq. 4' and Eq. 8, of CF₃CF₂CHCl₂ and CF₃CHCl₂, respectively, against the NaOH concentration at each temperature.

Figure S4. Aqueous reactions of CF₃CF₂CHCl₂ with OH⁻ at 343 K (A1, B1), 333 K (A2, B2), 323 K (A3, B3) and 313 K (A4, B4). Panels A1–A4 plot headspace partial pressure of CF₃CF₂CHCl₂ over 9 cm³ of 1–4 mM aqueous NaOH against t_h (open symbols) or t_m (closed symbols). Panels B1–B4 plot $k_1^{(1)}$, which were deduced from the data in panels A by Eq. 4' (open symbols) and Eq. 8 (closed symbols), against the NaOH concentration.

Figure S5. Aqueous reactions of CF₃CHCl₂ with OH⁻ at 343 K (A1, B1), 333 K (A2, B2), 323 K (A3, B3) and 313 K (A4, B4). Panels A1–A4 plot headspace partial pressure of CF₃CHCl₂ over 9 cm³ of 0.5–3 M aqueous NaOH against t_h (open symbols) or t_m (closed symbols). Panels B1–B4 plot $k_1^{(l)}$, which were deduced from the data in panels A by Eq. 4' (open symbols) and Eq. 8 (closed symbols), against the NaOH concentration.

7. Salting-out effect of CF3CHCl2 in aqueous NaCl solutions

The salting-out effect was approximately estimated by use of aqueous NaCl solutions instead of aqueous NaOH solutions. Fig. S6 plots change in $K_{\rm H}^{\rm ms}$ in aqueous NaCl solutions at 313, 333 and 353 K against concentration of NaCl, where $K_{\rm H}^{\rm ms}$ is an apparent Henry's law constant of CF₃CHCl₂ in a prescribed concentration ($m_{\rm s}$) of aqueous NaCl solutions.

Figure S6. Plots of $\ln(K_{\rm H}^0 / K_{\rm H}^{\rm ms})$ versus concentration of aqueous NaCl for evaluating a salting-out effect of CF₃CHCl₂ in aqueous NaCl solutions at 313, 333 and 353 K. The $K_{\rm H}^0$ value was deduced from $K_{\rm H}^{353}$ and $\Delta H_{\rm sol}$ listed in Table I with Eq. 3. The $K_{\rm H}^{\rm ms}$ values were the average obtained in two experiments at each experimental condition (temperature and concentration of NaCl). Five series of headspace samples (total 30 samples) were used to obtain $K_{\rm H}^{\rm ms}$ under each experimental condition.

8. Comparison of aqueous reactions of OH- with CF3CF2CHCl3 and CF3CHCl2

The k_{OH^-} value at 353 K of CF₃CHCl₂ was three orders of magnitude smaller than that of CF₃CF₂CHCl₂ although the activation energy for CF₃CHCl₂ was smaller than that for CF₃CF₂CHCl₂. Table S8 lists the free energy, the enthalpy and the entropy of activation in aqueous reactions with OH⁻ of CF₃CF₂CHCl₂ and CF₃CHCl₂ with OH⁻, calculated from the k_{OH^-} value at each temperature and the activation energy ΔE_a for each reaction.

Table S8. Free energy, enthalpy and entropy of activation in aqueous reactions with OH⁻ of CF₃CF₂CHCl₂ and CF₃CHCl₂ with OH⁻, calculated from the k_{OH^-} value at each temperature and the activation energy ΔE_a for each reaction.

CF ₃ CF ₂ CHCl ₂				CF ₃ CHCl ₂			
<i>T</i> (K)	ΔG^{\ddagger} (kJ mol ⁻¹)	ΔH^{\ddagger} (kJ mol ⁻¹)	ΔS^{\ddagger} (J K ⁻¹ mol ⁻¹)	ΔG^{\ddagger} (kJ mol ⁻¹)	ΔH^{\ddagger} (kJ mol ⁻¹)	ΔS^{\ddagger} (J K ⁻¹ mol ⁻¹)	
353	88.6	91.0	6.8	110.8	70.0	-115.7	
343	88.6	91.0	7.2	109.6	70.0	-115.4	
333	88.6	91.1	7.5	108.5	70.1	-115.1	
323	89.0	91.2	6.8	107.3	70.2	-114.9	
313	88.9	91.3	7.5	106.2	70.3	-114.8	