論文

査読有り
2019年11月

Reaction of ribulose biphosphate carboxylase/oxygenase assembled on a DNA scaffold

BIOORGANIC & MEDICINAL CHEMISTRY
  • Huyen Dinh
  • ,
  • Eiji Nakata
  • ,
  • Peng Lin
  • ,
  • Masayuki Saimura
  • ,
  • Hiroki Ashida
  • ,
  • Takashi Morii

27
22
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.bmc.2019.115120
出版者・発行元
PERGAMON-ELSEVIER SCIENCE LTD

Ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO), an enzyme in the Calvin-Benson-Bassham cycle of photosynthesis, catalyzes the first step of CO2 fixation in plants, algae, and photosynthetic bacteria. Despite of the important function in the global carbon cycle, RuBisCO suffers from a slow reaction rate and a competing reaction with O-2 which draw attentions to improve the enzyme efficiency. In this study, a RuBisCO dimer from Rhodospirillum rubrum was assembled on a DNA scaffold using a dimeric DNA binding protein as an adaptor. The enzyme assembly was characterized by atomic force microscopy and RuBisCO assembled on the DNA scaffold showed avid enzymatic activity with retaining its parent carboxylase function. To mimic the environment of the natural microcompartment in cyanobacterial carboxysome that encapsulate the second enzyme carbonic anhydrase (CA) with RuBisCO, RuBisCO was next co-assembled with CA on the DNA scaffold. Although the natural carboxysome assembly is believed to enhance the RuBisCO activity, the co-assembly of RuBisCO and CA reduced the RuBisCO activity, suggesting that the preferential CO2 dehydration by CA reduced the RuBisCO reaction rate. In line with the recent study, our results suggest that the proximity in the interenzyme distance of RuBisCO and CA is not the crucial determinant for the enhanced RuBisCO activity in carboxysome. The assembly of RuBisCO and CA on DNA scaffold provides a platform for further study on the spatial control of RuBisCO and associating enzymes.

リンク情報
DOI
https://doi.org/10.1016/j.bmc.2019.115120
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000491130200004&DestApp=WOS_CPL
ID情報
  • DOI : 10.1016/j.bmc.2019.115120
  • ISSN : 0968-0896
  • eISSN : 1464-3391
  • Web of Science ID : WOS:000491130200004

エクスポート
BibTeX RIS