Papers

Peer-reviewed International journal
Feb 5, 2020

Callose synthesis suppresses cell death induced by low-calcium conditions in leaves.

Plant physiology
  • Yusuke Shikanai
  • Ryosuke Yoshida
  • Tomoko Hirano
  • Yusuke Enomoto
  • Baohai Li
  • Mayu Asada
  • Mutsumi Yamagami
  • Katsushi Yamaguchi
  • Shuji Shigenobu
  • Ryo Tabata
  • Shinichiro Sawa
  • Hiroki Okada
  • Yoshikazu Ohya
  • Takehiro Kamiya
  • Toru Fujiwara
  • Display all

Volume
182
Number
4
First page
2199
Last page
2212
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1104/pp.19.00784

Despite the importance of preventing calcium (Ca) deficiency disorders in agriculture, knowledge of the molecular mechanisms underlying plant adaptations to low-Ca conditions is limited. In this study, we provide evidence for a crucial involvement of callose synthesis in the survival of Arabidopsis (Arabidopsis thaliana) under low-Ca conditions. A mutant sensitive to low-Ca conditions, low Ca sensitive 3 (lcs3), exhibited high levels of cell death in emerging leaves and had defects in its expanding true leaves under low-Ca conditions. Further analyses showed that the causal mutation was located in a putative β-1,3 glucan (callose) synthase gene, GLUCAN SYNTHASE LIKE10 (GSL10). Yeast complementation assay results showed that GSL10 encodes a functional callose synthase. Ectopic callose significantly accumulated in wild-type plants under low-Ca conditions, but at a low level in lcs3. The low-Ca sensitivity of lcs3 was phenocopied by the application of callose synthase inhibitors in wild-type plants, which resulted in leaf expansion failure, cell death, and reduced ectopic callose levels under low-Ca conditions. Transcriptome analyses showed that the expression of genes related to cell wall and defense responses was altered in both wild-type plants under low-Ca conditions and in lcs3 under normal-Ca conditions, suggesting that GSL10 is required for the alleviation of both cell wall damage and defense responses caused by low Ca levels. These results suggest that callose synthesis is essential for the prevention of cell death under low-Ca conditions and plays a key role in plants' survival strategies under low-Ca conditions.

Link information
DOI
https://doi.org/10.1104/pp.19.00784
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/32024698
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140939
ID information
  • DOI : 10.1104/pp.19.00784
  • Pubmed ID : 32024698
  • Pubmed Central ID : PMC7140939

Export
BibTeX RIS