論文

査読有り
2015年1月1日

The role of signaling pathways on proliferation and self-renewal of cultured bovine primitive germ cells

Reproductive Medicine and Biology
  • Mahesh Sahare
  • ,
  • Ayagi Otomo
  • ,
  • Kana Komatsu
  • ,
  • Naojiro Minami
  • ,
  • Masayasu Yamada
  • ,
  • Hiroshi Imai

14
1
開始ページ
17
終了ページ
25
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1007/s12522-014-0189-x
出版者・発行元
John Wiley and Sons Ltd

Purpose: Gonocytes are primitive male germ cells residing in the neonatal testes and are unipotent in nature, but also have pluripotent stem cell ability in mice under appropriate culture conditions. This study was performed to elucidate the molecular mechanisms of self-renewal and survival of cultured bovine gonocytes.
Methods: Gonocytes were isolated from neonatal bull calves and were cultured in DMEM/F12 supplemented with 15 % knock-out serum replacement (KSR) and glial cell-derived neurotrophic factor (GDNF). Cells were analyzed six days after culturing for cell-signaling molecular markers.
Results: Colony formation was observed 3–4 days after being cultured. Addition of GDNF enhanced mitogen-activated protein kinase 1/2 (MAPK1/2) phosphorylation and activated the MAPK signaling pathway. Inhibition of MAPK signaling reduced cell proliferation and abolished colony formation. However, inhibition of phosphoinositide 3-kinase-AKT (PI3K-AKT) signaling, a dominant pathway for self-renewal of mouse germ cells, did not show any effects on cultured bovine gonocytes. Expression of cell cycle-related regulators cyclin D2 and cyclin-dependent kinase 2 (CDK2) was downregulated with inhibition of MAPK signaling.
Conclusions: These results indicate activation of MAPK plays a critical role in self-renewal and survival of bovine gonocytes via cyclin D1 and CDK2.

リンク情報
DOI
https://doi.org/10.1007/s12522-014-0189-x
ID情報
  • DOI : 10.1007/s12522-014-0189-x
  • ISSN : 1447-0578
  • ISSN : 1445-5781
  • SCOPUS ID : 84939885011

エクスポート
BibTeX RIS