論文

査読有り 本文へのリンクあり
2018年12月1日

Silkworms suppress the release of green leaf volatiles by mulberry leaves with an enzyme from their spinnerets

Scientific Reports
  • Hiroki Takai
  • Rika Ozawa
  • Junji Takabayashi
  • Saki Fujii
  • Kiriko Arai
  • Ryoko T. Ichiki
  • Takao Koeduka
  • Hideo Dohra
  • Toshiyuki Ohnishi
  • Sakura Taketazu
  • Jun Kobayashi
  • Yooichi Kainoh
  • Satoshi Nakamura
  • Takeshi Fujii
  • Yukio Ishikawa
  • Takashi Kiuchi
  • Susumu Katsuma
  • Masayoshi Uefune
  • Toru Shimada
  • Kenji Matsui
  • 全て表示

8
1
開始ページ
11942
終了ページ
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1038/s41598-018-30328-6

© 2018, The Author(s). In response to herbivory, plants emit a blend of volatile organic compounds that includes green leaf volatiles (GLVs) and terpenoids. These volatiles are known to attract natural enemies of herbivores and are therefore considered to function as an indirect defense. Selection should favor herbivores that are able to suppress these volatile emissions, and thereby make themselves less conspicuous to natural enemies. We tested this possibility for silkworms, which were observed to leave secretions from their spinnerets while feeding on mulberry leaves. When we ablated the spinnerets of silkworms, no secretions were observed. Leaves infested by intact silkworms released smaller amounts of GLVs than leaves infested by ablated silkworms, indicating that the spinneret secretion suppressed GLV production. This difference in GLV emissions was also reflected in the behavioral response of Zenillia dolosa (Tachinidae), a parasitoid fly of silkworms. The flies laid fewer eggs when exposed to the volatiles from intact silkworm-infested leaves than when exposed to the volatiles from ablated silkworm-infested leaves. We identified a novel enzyme in the secretion from the spinneret that is responsible for the GLV suppression. The enzyme converted 13(S)-hydroperoxy-(9Z,11E,15Z)-octadecatrienoic acid, an intermediate in the biosynthetic pathway of GLVs, into its keto-derivative in a stereospecific manner. Taken together, this study shows that silkworms are able to feed on mulberry in a stealthy manner by suppressing GLV production with an enzyme in secretions of their spinnerets, which might be a countermeasure against induced indirect defense by mulberry plants.

リンク情報
DOI
https://doi.org/10.1038/s41598-018-30328-6
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/30093702
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85051531228&origin=inward 本文へのリンクあり
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85051531228&origin=inward
ID情報
  • DOI : 10.1038/s41598-018-30328-6
  • eISSN : 2045-2322
  • PubMed ID : 30093702
  • SCOPUS ID : 85051531228

エクスポート
BibTeX RIS