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Quark beta decay in the inhomogeneous chiral phase and cooling of compact stars
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A novel cooling mechanism is proposed for neutron stars, based on the recent development in the

studies of the QCD phase diagram. Possible appearance of the inhomogeneous chiral phase makes

the quark beta decay without gluonic interaction. An estimate of the neutrino emissivity shows the

order of 1024−26(T/109)6(erg·cm−3 · s−1) near the phase boundaries, whose efficiency is comparable

with the usual quark cooling or pion cooling, but it works only in the limited density region. These

features may give another cooling scenario of neutron stars.

PACS numbers: 21.65.Qr,26.60.Kp, 97.60Gb

I. INTRODUCTION

The appearance of the inhomogeneous phases near the

phase boundary should be rather common phenomenon

in many-body systems. Fulde-Ferrell-Larkin-Ovchinikov

(FFLO) state is one of the typical examples in super-

conductivity in the presence of magnetic impurities [1]

and has been recently studied in dilute atomic gas [2],

or within the context of color superconductivity in QCD

[3]. Inhomogeneous phase formation in magnetic mate-

rials is another one; spin density wave [4, 5] or texture

[6]. Similar subject has been also addressed in the QCD

phase diagram. The deconfinement and chiral transition

have been studied both theoretically and experimentally

in the QCD phase diagram [7]. The direct numerical

calculation based on the lattice QCD theory should be

a most powerful tool for this purpose, but its validity

is, for the present, limited to high temperature and low

density region due to the sign problem. On the contrary,

the phase structure is also important and interesting in

the high-density region in the light of recent progress

in the observation of compact stars [8]. Many theoret-

ical studies have been devoted to the chiral transition

by the use of the effective models of QCD [7]. Conse-

quently, spontaneous symmetry breaking (SSB) should

be restored at high density, which is specified by the van-

ishment of the qq̄ scalar condensate, 〈ψ̄ψ〉: it is the order
parameter in the chiral transition and takes a finite value

in the vacuum to generate the quark or nucleon mass. In

these studies it is implicitly assumed that the condensate

is scalar and uniform, while Lorenz invariance or parity

symmetry no more holds at finite densities.

Recently there appeared many papers about the pos-

sibility of the inhomogeneous chiral phases [9], where the

condensates are not restricted to the scalar one and they

are spatially nonuniform, stimulated by the mathemati-

cal discoveries of the Hartree-Fock solutions in the 1+1

dimensions [10]; it has been shown that analytic solu-

tions are obtained in terms of the elliptic functions in the

Gross-Neveu model or two dimensional NJL model in the

large N limit. The order parameter or the mean-field is

generalized to be complex as M(x) = 〈ψ̄ψ〉+ i〈ψ̄iγ5ψ〉 =
∆(x)eiθ(x), they have found the solutions of the self-

consistent coupled-equations of quark andM(x) for these

models. Its direct application is possible for the one di-

mensional order in 1+3 dimensions by embedding the one

dimensional structure and operating the Lorentz boost in

the direction perpendicular to it. Actually Nickel have

performed this procedure for the real kink crystal (RKC)

[11], where θ(r) = 0. Similar procedure may be also pos-

sible for the chiral spiral. The chiral spiral has a former

history. Nakano and one of the authors (TT) have stud-

ied the possibility of the inhomogeneous chiral phase in

1+3 dimensional quark matter within the SU(2)×SU(2)

NJL model [12]. Using θ(r) = q·r, the chiral condensates
take form, 〈ψ̄ψ〉 = ∆cos(q · r), 〈ψ̄iγ5τ3ψ〉 = ∆sin(q · r),
which is a 1+3 dimensional realization of the chiral

spiral in 1+1 dimensions. They called it dual-chiral-

density wave (DCDW). Since the spatial displacement

of the condensates is compensated by chiral rotation

on the quark field, the external degrees of freedom is

mixed with the internal ones; the wavefunction changes

ψ → eik·dexp(iγ5τ3q · d/2)ψ following the displacement,

r → r+ d.

The physical mechanism has been discussed in ref.[12];

the nesting effect of the Fermi surface may play a key

role as in condensed matter physics [4, 5, 13–15]. If this

is the case, the appearance of the inhomogeneous phase

http://arxiv.org/abs/1403.1927v1


2

should be rather robust and less model-dependent. How-

ever, there are still left many subjects to be elucidated.

In ref.[11] Nickel suggested that RKC is more favorite

than DCDW in symmetric quark matter in the chiral

limit by comparing the thermodynamic potential. How-

ever, it should be an ideal situation and we must carefully

compare both cases in realistic situations, including the

model dependence [16, 17]. In particular, the effect of the

quark current mass [18, 19] and magnetic field should be

important [20, 21]. Actually chiral anomaly plays an im-

portant role and DCDW develops in a wide region in the

presence of the magnetic field [20, 21] Asymmetric quark

matter or chemical equilibrium is also important in com-

pact stars [22]. Thus more elaborate studies are needed

to say definite things about the most plausible configu-

ration, the critical density or the critical temperature.

On the other hand it should be important to consider

their phenomenological implications. Since the order pa-

rameter is spatially nonuniform and takes a periodic func-

tion, one may expect elasticity like a Coulomb lattice or

liquid crystal [23]. The periodicity of the order parameter

may give rise to another effect. The quark wave function

accordingly takes a special form dictated by the general-

ized Bloch theorem [10]; momentum is not a good quan-

tum number, so that the condensates should modify the

momentum conservation in the elementary processes like

the Umklapp process in solid [24]. Moreover, the appear-

ance of the pseudoscalar condensate is related to mag-

netic properties [12, 21]. Thus it should be interesting

and important to figure out how such features manifest

by confronting them with physical phenomena. In the

relativistic heavy-ion collisions the formation of quark-

gluon plasma has been expected. Some implication of

the chiral critical point has been studied theoretically and

experimentally [7]. If the inhomogeneous phases are re-

alized during the collisions, they might give rise to some

phenomena never discussed yet [25]. In this paper we

consider the cooling process in compact stars as an as-

trophysical implication of the inhomogeneous phases.

Cooling of compact stars has provided us with informa-

tion about form of matter at high-densities [26]. Recent

observations of the surface temperature of young pulsars

have suggested that some compact stars such as 3C58 or

Vela seem to have rather low temperature which should

be barely explained by the standard scenario. Such stars

might require exotic cooling; quark cooling is one of the

fast cooling mechanisms in the core region. On the other

hand, Cas A also presents important information about

the thermal evolution of young pulsars [27]. Considering

the young age of t = 330yr, the observed effective tem-

perature of Cas A also gives a strong constraint on the

equation of state and cooling processes. In the recent

paper we have presented models which satisfy both cases

of Cas A and other cooler stars by considering the quark

matter in the core [28].

As a cooling mechanism in quark matter, the neutrino

emission by way of the direct Urca process is well-known

and standard, d → u + e− + ν̄e , u + e− → d + νe [42]

. This process works for interacting quarks, while it is

strongly prohibited for free and light quarks due to the

kinematical condition (triangular condition) at low tem-

perature. The neutrino emissivity is then efficient and

proportional to αsT
6 with the QCD coupling constant

αs[29].

Here we discuss a new cooling mechanism, based on

the recent development in understanding of the QCD

phase diagram: possible appearance of the inhomoge-

neous phases near the chiral transition [7]. Accordingly

the chiral condensates modify the elementary process by

supplying the extra momentum at the interaction vertex

[43].

This paper is organized as follows. In Sec. II we present

our framework for calculating the neutrino emissivity,

where some characteristic aspects associated with the

DCDW phase are pointed out. In Sec. III numerical re-

sults for the neutrino emissivity are demonstrated, and

their implications for cooling of hybrid stars are briefly

discussed in Sec. IV. Summary and concluding remarks

are given in Sec. V. Properties of the quark propagator is

summarized in Appendix A. The evaluation of the weak

matrix element is presented in Appendix B, and details

of angular integrals for obtaining the emissivity in two

limiting cases are given in Appendices C and D.

II. FRAMEWORK

A. DCDW

First we briefly summarize the results about DCDW

in the previous work [12]. The DCDW phase can be

represented as a chirally rotated state from normal quark

matter,

|DCDW〉 = exp

(

i

∫

θ(r)A0
3(r)d

3r

)

| normal〉

≡ UDCDW(θ) | normal〉, (1)
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where Aµ
i denotes the axial-vector current with i-th

isospin component. We restrict the chiral transforma-

tion to UI3(1) around the third axis in the isospin space

to preserve electromagnetic charge of the system. Then

we can easily check the following relations:

〈DCDW|ψ̄ψ|DCDW〉 = ∆cos(q · r),
〈DCDW|ψ̄iγ5τ3ψ|DCDW〉 = ∆sin(q · r), (2)

for θ(r) = q · r, where the amplitude ∆ is given by

〈normal|ψ̄ψ|normal〉. In the following we use the NJL

model with SU(2)×SU(2) symmetry in the chiral limit,

as an effective model of QCD. When we define the new

quark field ψW by way of the Weinberg transformation

such that

ψW = exp(iγ5τ3q · r/2)ψ, (3)

ψW satisfies the following Hartree equation,

(i∂/−m+ 1/2γ5τ3q/)ψW = 0, (4)

with q = (0,q). Here m = −2G∆ is the dynami-

cal quark mass generated by the quark-quark interac-

tion with the coupling constant G. The quark eigenstate

(quasi-particle) then can be represented by |p, η, ǫ〉 with
quantum numbers momentum p, η = ±1 specified by

the spin polarization and ǫ = ±1 the particle and anti-

particle. Accordingly the energy eigenvalues read

Eη
p = ǫ

(

E2
p + |q|2/4 + η

√

(p · q)2 +m2|q|2
)1/2

, (5)

with Ep = (|p|2 + m2)1/2. Thus the Fermi surfaces of

the quasi-particles are deformed in this case: one has the

prolate shape and the other the oblate shape (see Figs.1

and 2).

Choosing q//ẑ without loss of generality, the eigen-

function renders [12]

〈r|p, η, ǫ = 1〉 = uηW (p)exp(ip · r) (6)

with the spinor

uηW =

(

aη1φ+ + aη2φ−
bη1φ+ + bη2φ−

)

,

where φ± is the Pauli spinor s.t. σzφ± = ±φ± and the

coefficients aηi , b
η
i are given by

aη1
aη2

=
p−
pz

· m+ ηβ

Eη
p − |q|/2− ηβ

, (7)

bη1
aη2

=
p−

Eη
p − |q|/2− ηβ

, (8)

bη2
aη2

=
pz

−m+ ηβ
, (9)

for τ3 = 1 and qz = |q|, with β ≡ (p2z +m2)1/2 and p− ≡
p1 − ip2 for the positive-energy solutions. The negative-

energy solutions (ǫ = −1) are obtained by replacing Eη
p

by −Eη
p. Note that these eigenfunctions are written in

terms of the newly-defined quark field ψW .

DCDW develops between the onset chemical potential

µc1 and the termination one µc2. Their values and those

of the parameters are listed in Table I [12].

µc1 µc2 mc1 mc2 |q|c1 |q|c2

.49 .53 .2 .01 .55 .8

TABLE I: Values of the chemical potentials and the parame-

ters in the unit of the cut-off parameter Λ = 850MeV.

B. Neutrino emissivity

We consider the neutrino emissivity in the presence of

DCDW, following refs.[31],[32],[33]. Consider the beta

decay of d quarks s.t. d(p1) → u(p2) + e−(p3) +

ν̄e(p4) in the DCDW phase, where pi = (Ei,pi) de-

notes the four-momentum. Taking the effective inter-

action as the current-current form, HW = G̃F√
2
hµ1+i2lµ +

h.c., the transition matrix element is given as Wfi ≡
〈u, e−, ν̄e |HW | d〉 = 〈uW , e−, ν̄e

∣

∣

∣H̃W

∣

∣

∣ dW 〉, where

H̃W = UDCDW(q)HWU †
DCDW(q) =

G̃F√
2
h̃µ1+i2lµ + h.c..

(10)

G̃F = GF cos θC with GF being the Fermi weak cou-

pling constant and θC the Cabibbo angle. Here it is to

be noted that the matrix element between eigenstates

|p, η, ǫ〉 should be calculated by using the untransformed

states, exp(−iγ5τ3q · r/2)|p, η, ǫ〉, as in the pion cooling

[31]. The transformed quark current h̃µ1+i2 now reads,

h̃µ1+i2 = UDCDW(q)hµ1+i2U
†
DCDW(q) = exp (−iq · r) hµ1+i2,

(11)

by way of the current algebra, which implies that

DCDW modifies the momentum conservation at the

weak-interaction vertex [44] . Usual triangular condition

among p1,p2 and p3 is now relaxed by the momentum

supply from DCDW, so that the beta decay process be-

comes possible.

Since quarks should be treated as quasiparticles in our

case, naive application of the emissivity based on the

Fermi golden rule is not relevant: we must properly take

into account the wave-function renormalization besides
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the deformation of the Fermi surface. Thus we start with

more general formula. The neutrino emissivity can be

then given as [34, 35]

ǫ = NcG̃
2
F

∫

d3p3
(2π)32E3

∫

d3p4
(2π)32E4

E4Lλσ

× nF (−E3 + µe)fB(k0)ImΠλσ
R (k), (12)

with k = (E3+E4−µe,p3+p4), the Fermi-Dirac distri-

bution function nF and the Bose-Einstein one fB. The

information of the quark tensor is summarized in the W

boson polarization tensor,

Πλσ
R (k) = T

∑

n

∫

d3p1
(2π)3

tr
[

ΓλSd
W (p1)Γ

σSu
W (p1 − k ± q)

]

(13)

with Γµ = γµ(1−γ5) and the quark propagator, S−1
W (p) =

p/ −m+ γ5τ3q//2. Since the contribution from the Dirac

sea is small at low temperature and high density, the

quark thermal Green’s function approximately renders

Si
W ≃

∑

η=±

ρηi
iωn − (Eη

p − µi)
, (14)

in terms of the density matrices ρ±i (see Appendix A),

where ωn denotes the Matsubara frequency, ωn = (2n+

1)πT . After some manipulation, we have an expression

for the emissivity,

ǫDCDW = 2NcV
−1

[

4
∏

i=1

V

∫

d3pi
(2π)3

]

E4WfinF (p1)

× (1− nF (p2)) (1− nF (p3)) , (15)

whereWfi is the transition rate for beta decay of d quark

in the DCDW phase.

C. Transition rate

The transition rate is given as

Wfi = V (2π)4δ(4)(p1 − p2 − p3 − p4 ± q)|M |2/
4
∏

i=1

(2EiV )

(16)

with

|M |2 =
1

2

∑

σ1,σ2,σ3

|Mfi|2 , (17)

where the squared matrix element can be evaluated as

|Mfi|2 =
G̃2

F

2
tr (ρeΓµρνeΓν) tr (ρuΓ

µρdΓ
ν)

≡ G̃2
F

2
HµνLµν (18)

in terms of the density matrices, ρi, i = u, d for quarks

and

ρe = p/3 +me

ρν = p/4, (19)

for leptons. Note that the sum over the spin polarizations

of quarks is taken in Eq. (17). The leptonic tensor Lµν

can be easily evaluated as

Lµν =
∑

σ3

tr (ρeΓµρνeΓν)

= 8
[

p3µp4ν − gµνp3p4 + p3νp4µ + iǫαµβνp
α
3 p

β
4

]

.(20)

The quark tensorHαβ has a somewhat complicated form.

Consider

Hµν
ηη′ ≡

1

4
tr
(

Λη
uΓ

µΛη′

d Γν
)

, (21)

for the spin polarization η, η′(= ±1) by the use of the

density matrices Λ± in Appendix A. The evaluation of

the quark tensor is straightforward to give

Hµν
ηη′ = 2

[

kη,µ1 kη
′,ν

2 − gµνkη1k
η′

2 + kη,ν1 kη
′,µ

2 + iǫαµβνkη1αk
η′

2β

]

(22)

(Appendix B), where kηi is defined as

kη1 =
(

pη1 −
q

2

)

(1− pη1Q
η
1) +m2Qη

1 ,

kη
′

2 =
(

pη
′

2 +
q

2

)(

1− pη
′

2 Q
η′

2

)

+m2Qη′

2 , (23)

with Qη
i = −ηq/

√

(pηi q)
2 −m2q2 and pηi = (Eη

i ,pi) ,

where η and η′ denote the spin polarization for d quark

and u quark, respectively. Then

∣

∣

∣
Mηη′

fi

∣

∣

∣

2

=
G̃2

F

2
Hµν

ηη′Lµν

= 32G̃2
F (k

η′

2 p3)(k
η
1p4), (24)

which is reduced to 32G̃2
F (p2p3)(p1p4) as q → 0. After

summing over σ2 and averaging over σ1, we immediately

get the Iwamoto’s result [29].

On the other hand,

kη1 →
(

pη1 −
q

2

)

(

1− η
p1 · q
|p1 · q|

)

kη
′

2 →
(

pη
′

2 +
q

2

)

(

1 + η′
p2 · q
|p2 · q|

)

, (25)

in the massless limit. If q is taken as z direction, only

the half space is relevant for each momentum integral,

depending on η. We shall see the neutrino emission is
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prohibited in this case, irrespective of q, by the energy-

momentum conservation unless the interaction is not in-

cluded, as in the direct URCA process. Recalling that

the driving mechanism for the emergence of DCDW is

the level splitting by the mass term between the energy

spectra of massless quarks with relative momentum dif-

ference q. Also, since mass is proportional to the ampli-

tude of DCDW, there should not be left any effect in the

massless limit.

III. PHASE SPACE INTEGRAL

Taking [31, 36] for references, we try to manipulate the

phase space integral for the emissivity (15). The energy-

momentum conservation reads

p1 = p2 + p3 + p4 + q, (26)

Eη
1 = Eη′

2 + E3 + E4. (27)

Dropping p4 in Eq. (26) because of |p4| = O(T ),

(p1 − q/2)
2 ≃ (p2 + q/2)

2
+ |p3|2 + 2p3 (p2 + q/2) ,

(28)

which is recast into

(Eη
1 )

2 −
(

η
√

(p1 · q)2 +m2|q|2 + q · p1

)

≃ (Eη′

2 )2 −
(

η′
√

(p2 · q)2 +m2|q|2 − q · p2

)

+

+ |p3|2 + 2p3 (p2 + q/2) , (29)

where we put mu ≃ md ≡ m. Similarly, we find

(Eη
1 )

2 ≃ (Eη′

2 )2 + E3
2 + 2Eη′

2 E3, (30)

from Eq. (27) by neglecting E4 again. From Eqs. (29),

(30) we have
(

η
√

(p1 · q)2 +m2|q|2 + q · p1

)

−
(

η′
√

(p2 · q)2 +m2|q|2 − q · p2

)

+ 2p3 (p2 + q/2) ≃ 2E3E
η′

2 , (31)

where we used E3 ≃ |p3|.

A. Case of the massless-quark limit

First, we consider the massless limit by setting m = 0.

Eq. (31) is then reduced to a simple one,

η|p1 · q|
(

1 + η
p1 · q
|p1 · q|

)

− η′|p2 · q|
(

1− η′
p2 · q
|p2 · q|

)

+ 2p3 (p2 + q/2) ≃ 2E3E
η′

2 . (32)

The first two terms should be vanished for the non-zero

value of kαi from Eq. (25). Using Eq. (25), the squared

matrix element (24) is also reduced to a simple one,

∣

∣

∣M
ηη′

fi

∣

∣

∣

2

= 32G̃2
F (k

η
1p4)

(

1 + η′
p2 · q
|p2 · q|

)

×
(

Eη′

p2
E3 − (p2 + q/2) · p3

)

, (33)

which gives no contribution due to Eqs. (25) and (32).

Generally the emissivity is vanished as q or m goes to

zero as it should be.

Since the Fermi surface is well deformed as the wave

vector q increases [12], the general expression of the emis-

sivity is difficult to be evaluated. However, one may es-

timate it by considering the specific cases near the phase

boundaries of the DCDW phase, where the deformation

is very weak at one side and extremely strong at the other

side.

B. Near the onset density of DCDW

1. Effective Fermi sphere

First, we consider the cooling rate near the onset den-

sity of the DCDW phase, where the deformation of the

Fermi surface is not so remarkable (Fig. 1). So, one may

introduce the effective Fermi sphere instead of the real-

istic Fermi surface, keeping the volume fixed. The Fermi

sphere of the minor spins is already sufficiently small, and

we can safely discard its contribution (one Fermi sea ap-

proximation); we, hereafter, only consider the u, d quarks

with η = η′ = −1. Moreover, since the dynamical quark

mass is rather small compared with the quark chemical

potentials, mu ≃ md ≪ µi, we may treat them as mass-

less quarks. The volume of each Fermi sphere can be

easily evaluated,

V i
F = 2π

∫ pmax

z

0

dpz

[

|q|
√

m2 + p2z − p2z + µ2
i −m2 − |q|2/4

]

= 2π

[

|q|/2
(

pmax
z

√

pmax,2
z +m2

+ m2ln





pmax
z +

√

pmax,2
z +m2

m









−p
max,3
z

3
+
(

µ2
i −m2 − |q|2/4

)

pmax
z

]

, (34)
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FIG. 1: Fermi surfaces at the onset density with arbitrary

scale. The top panel denotes that of majority particle with

the spin polarization η = −1, while the bottom panel denotes

that of minority particle with η = +1. pt = (p2x + p2y)
1/2 and

all the values of momenta are written in the unit of the cut-off

parameter Λ.

where pmax
z ≃

√

(µi + |q|/2)2 −m2 for each u or d quark.

Thus the radius of the effective Fermi sphere is given as

p̄Fi ≃ (µi + |q|/2)
[

4µi − |q|
4µi + 2|q|

]1/3

≃ µi + |q|/4 + ...,

(35)

where we have used µi ≫ |q|/2 ≃ m. Note that the

quark energy is now approximated as E±
p ≃ |p| within

the same approximation. In the following we evaluate the

emissivity by assuming massless quarks in the presence

of DCDW. Usually it vanishes in the absence of DCDW

by the kinematical conditions. Following Iwamoto [29],

we begin with the formula,

|Mηη′

fi |2 = 32G̃2
F (p1 · p4)(p2 · p3), (36)

for the squared matrix element. Note that the factor 2

is different from [29] since the only one polarization is

relevant. It can be further written as

|Mηη′

fi |2 ≃ 32G̃2
FE1E2E3E4(1− cos θ14)(1− cos θ23),

(37)

where θ14 (θ23) is the angle between momenta of the d

quark and neutrino (the angle between momenta of the

u quark and electron).

2. Expression of the emissivity

Setting the momentum magnitudes of quarks and elec-

trons equal to their values on the respective Fermi sur-

faces, one obtains

ǫDCDW ≃ 3

(2π)8
p̄2Fup̄

2
Fdµ

2
e

∫

dE1dE2dE3E
2
4dE4

× δ(E1 − E2 − E3 − E4)

3
∏

i=1

(2Ei)
−1

× n(p1)[1− n(p2)][1− n(p3)]

(

4
∏

i=1

∫

dΩi

)

|Mηη′

fi |2

× δ(3)(p1 − p2 − p3 − p4 − q), (38)

where only one polarization has been taken into account

for the initial d quarks. First we can proceed the angular

integral as in the pion-condensed case[31]:

A ≡
4
∏

i=1

(∫

dΩi

)

|Mηη′

fi |2δ(3)(p1 − p2 − p3 − p4 − q) .

(39)

In the following, the neutrino momentum p4 in the delta

function is dropped because of |pν̄ | = O(T ). After in-

tegrating with respect to the angle Ω4 with the squared

matrix element (37), one has

A ≃ 32

2π2
G̃2

FE1E2E3E4Ã , (40)

where

Ã =

(

3
∏

i=1

∫

dΩi

)

(1 − cos θ23)

∫

d3xei(p1−p2−p3−q)·x

≃ 64π5

|p1||p2||q|
. (41)

The derivation of the Ã is given in Appendix C. Note

that this integral gives a finite value only if the triangle

condition is satisfied in the limit |q| → 0 as shown in

Appendix C. The remaining phase-space integration in

Eq. (38) leads to the emissivity,

ǫDCDW ≃ 3

(2π)5
µuµd

µ2
e

2|q|32G̃
2
F I, (42)

with

I =

(

3
∏

i=1

∫ ∞

−∞
dEi

)

∫ ∞

0

dE4E
3
4δ(E1 − E2 − E3 − E4)

×n(p1)[1 − n(p2)][1− n(p3)] =
457

5040
π6T 6. (43)

The emissivity of the neutrino process, u+ e− → d+ νe,

gives the same contribution as that of the process, d →
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u + e− + ν̄e. Therefore, by multiplying a factor 2, one

finally has

ǫDCDW ≃ 457

1680
πG̃2

Fµuµd
µ2
e

|q|T
6. (44)

Assuming µu = µd, as in the non-interacting u, d quark

matter, and using the values in Table I, we can estimate

its numerical value as

ǫDCDW ≃ 6.1×1026(ρB/ρ0)
2/3Y 2/3

e T 6
9 (erg · cm−3 · s−1),

(45)

where Ye is the electron number fraction in quark mat-

ter, Ye = ρe/ρB, ρ0 the nuclear saturation density,

ρ0 ≃ 0.17fm−3, and T9 ≡ T/109(K).

C. Near the termination density of DCDW

1. Deformation of the Fermi surface

–1.0 –0.5 0.0 0.5 1.0

–1.0

–0.5

0.0

0.5

1.0 η = − 1

p
z

pt

–1.0 –0.5 0.0 0.5 1.0

–1.0

–0.5

0.0

0.5

1.0 η = + 1

pt

p
z

FIG. 2: Fermi surfaces at the termination density with arbi-

trary scale. The meaning of the legend and symbols are the

same as in Fig. 1.

Near the termination density the dynamical quark

mass is also very small while the wave vector q is still

large. The quark energy is well approximated as E−
p ≃

|p ± q/2| for major quarks: the Fermi seas are then re-

markably deformed to be almost separated spheres with

centers shifted by q (see Fig. 2). Using Eq. (31), we have

the squared matrix element (24),

|Mηη′

fi |2 ≃ 32G̃2
F

[

{

E1E4 − (p1 − q/2) · p4

}

×
{

η

2

m2|q|2
√

(p1 · q)2 +m2|q|2

(

1 + η′
p2 · q

√

(p2 · q)2 +m2|q|2

)

− η′
m2(p3 + q/2) · q
√

(p2 · q)2 +m2|q|2

(

1− η
p1 · q

√

(p1 · q)2 +m2|q|2

)}

+
1

2
m2(p4 · q)

(

1 + η
p1 · q

√

(p1 · q)2 +m2|q|2

)

×
(

1 + η′
p2 · q

√

(p2 · q)2 +m2|q|2

)

− ηη′
m4(p3 + q/2) · q (p4 · q)

√

(p1 · q)2 +m2|q|2
√

(p2 · q)2 +m2|q|2

]

(46)

with the proper momentum restriction. Note that it is

obviously vanished when m→ 0 or |q| → 0.

Next consider the angular integrations of the squared

matrix element. Since one spin polarization is dominant,

it is sufficient to consider only the case where η = η′ = −1

for u, d quarks.

We first perform the angular integration in (15),

B =

(

4
∏

i=1

∫

dΩi

)

∣

∣

∣
Mηη′

fi

∣

∣

∣

2

δ3 (p1 − p2 − p3 − p4 − q) .

(47)

Near the termination density, m ≪ |pi| ≃ µi < |q|. (i =

u, d) [see Table I]. Thereby we make an approximation to

neglect the terms m2|q|2 appearing in the denominators

in the four parentheses (· · · ) in Eq. (46). Furthermore

we drop p4 from the delta function in Eq. (47) since

|p4| = O(T ). Then, substituting the matrix element (46)

into (47) and after integrating with respect to the angle

Ω4, one obtains

B =
32

2π2
G̃2

Fm
2Eη

1E4

(

3
∏

i=1

∫

dΩi

)

∫

d3xei(p1−p2−p3−q)·x

×
[

|q|2
2

{

− 1
√

(p1 · q)2 +m2|q|2

(

1− p2 · q
|p2 · q|

)

+
1

√

(p2 · q)2 +m2|q|2

(

1 +
p1 · q
|p1 · q|

)

}

+
p3 · q

√

(p2 · q)2 +m2|q|2

(

1 +
p1 · q
|p1 · q|

)

]

. (48)

The available range of the momentum p1 and p2 con-

tributing to the B is such that p1 · q > 0 and p2 ·
q < 0, which result from (1 + p1 · q/|p1 · q|) > 0 and

(1− p2 · q/|p2 · q|) > 0 in Eq. (48). As illustrated in
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Fig. 3, only the d quarks occupying the upper part of the

“two-center” Fermi surface and u quarks occupying the

lower part of the “two-center” Fermi surface contribute

to the reaction. Changing the variables p1,p2 by the new

O

p1

p1’

pt
q

pz

O p2

p2’

pt
q

pzη = − 1 η’ = − 1
d u

FIG. 3: Schematic view of the Fermi surfaces for d quarks

with η = −1 and u quarks with η′ = −1 near the termina-

tion density. See the text for the meaning of the legend and

symbols.

ones,

p′
1 ≡ p1 − q/2, p′

2 ≡ p2 + q/2, (49)

we have, from Eq. (5),

Eη
1 ≃ |p′

1|, Eη′

2 ≃ |p′
2|, (50)

which means both the angular integrations with respect

to p′
i (i=1, 2) have spherical symmetry. In terms of the

new variables p′
1, p

′
2, B is rewritten as

B =
32

2π2
G̃2

Fm
2Eη

1E4(B̃1 + B̃2 + B̃3) , (51)

where

B̃1 = −
(

3
∏

i=1

∫

dΩi

)

∫

d3x exp [i(p′
1 − p′

2 − p3) · x]

× |q|2
√

{(p′
1 + q/2) · q}2 +m2|q|2

≃ −32π5 |q|
|p′

1|2|p′
2||p3|

log

(

2|q|
m

)

, (52a)

B̃2 =

(

3
∏

i=1

∫

dΩi

)

∫

d3x exp [i(p′
1 − p′

2 − p3) · x]

× |q|2
√

{(p′
2 − q/2) · q}2 +m2|q|2

≃ 32π5 |q|
|p′

1||p′
2|2|p3|

log

(

2|q|
m

)

, (52b)

B̃3 =

(

3
∏

i=1

∫

dΩi

)

∫

d3x exp [i(p′
1 − p′

2 − p3) · x]

× 2(p3 · q)
√

{(p′
2 − q/2) · q}2 +m2|q|2

≃ 16π5|q| |p
′
1|2 − |p′

2|2 − |p3|2
|p′

1||p′
2|4|p3|

×
[

log

(

2|q|
m

)

− 2

]

. (52c)

The details of evaluating the B̃i (i = 1− 3) are shown in

Appendix D.

2. Expression of the emissivity

By the use of Eqs. (51) and (52) for the angular integral

B, the emissivity [Eq. (15)] is written in the case of the

region near the termination density as

ǫDCDW ≃ 3

(2π)8
|pFu|2|pFd|2µ2

e

∫

dE1dE2dE3E
2
4dE4

× δ(E1 − E2 − E3 − E4)
3
∏

i=1

(2Ei)
−1

× n(p1)[1− n(p2)][1 − n(p3)]B , (53)

where |pFi| (i = u, d) is the Fermi momentum of the

quark. Noting that |p′
1| ∼ E1, |p′

2| ∼ E2, |p3| ∼ E3,

|p4| = E4 and by the use of Eq. (43), one can perform

the remaining phase-space integrations in (53). With the

help of the chemical equilibrium relation,

µd = µu + µe , (54)

and by multiplying a factor 2 to take into account the

neutrino process, u + e− → d+ νe, one obtains the final

expression for the emissivity:

ǫDCDW =
1

2

457

1680
πG̃2

Fm
2|q|µe

µu
T 6

×
{

log

(

2|q|
m

)

+
µd

µu

[

log

(

2|q|
m

)

− 2

]}

. (55)

Assuming again µu ≃ µd in the u, d quark matter, and

using the values in Table I, we can estimate the numerical

value,

ǫDCDW = (2.16×1024)

(

ρB
ρ0

)1/3

Y 1/3
e T 6

9 (erg·cm−3·s−1) .

(56)

IV. DISCUSSION

In both regions near the onset density (I) and near

the termination density (II), the wave vector q, which

marks inhomogeneity of the DCDW phase, plays an es-

sential role on enhancement of neutrino emissions via the
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quark beta-decay. Owing to the existence of q, there is

no need to supply energy and momentum to the reac-

tions through spectator particles. As a result, the avail-

able phase space for the quark beta decay in the DCDW

phase is enough to give a large neutrino emissivity which

is proportional to T 6, as is the case with other exotic

cooling mechanisms[29, 31–33].

The neutrino emissivity in the DCDW phase near the

onset density, ǫ
(I)
DCDW, is proportional to 1/|q| [ (44) ].

This q-dependence originates from angular integral of

the phase factor, exp(−iq · x) in (41), and such specific

momentum-dependence is similar to that in the pion-

condensed case, where the neutrino emissivity, given on

the basis of spherical Fermi surfaces for baryons, is pro-

portional to 1/|k| with |k| being the momentum of p-

wave pion condensates[31, 32]. The magnitude of ǫ
(I)
DCDW

[ (45) ] is of the same order as those for normal quark

cooling[29] and pion cooling[31, 32]. On the other hand,

the neutrino emissivity in the DCDW phase near the ter-

mination density, ǫ
(II)
DCDW, has a complicated dependence

on |q| and m including the terms ∝ m2|q| log (2|q|/m)

[ (55) ], which reflects a singular structure of the quark

tensor originating from the deformed Fermi surface [see

Figs. 2 and 3]. The resulting emissivity ǫ
(II)
DCDW is smaller

than ǫ
(I)
DCDW by two orders of magnitude [see (45) and

(56)], but still larger than emissivities for standard cool-

ing processes such as the modified Urca process by a fac-

tor ∼ 103/T 2
9 [37].

It should be noted that the enhancement of neutrino

emissions works in the limited density region, because

the DCDW phase appears only near the chiral transi-

tion. Only the shell region of the radius width ∆R in-

side hybrid stars is responsible to the fast cooling mech-

anism. If enhanced cooling region is limited only to such

inhomogeneous phases, heavier compact stars may not

necessarily cool faster than lighter ones. This opens up

another possibility for explaining the thermal evolution

of Cas A and other cooler stars in a consistent way, as

recently proposed by Noda et al. based on the model

separating quark matter region into the CFL phase and

non-superconducting quark phase[28].

V. SUMMARY AND CONCLUDING REMARKS

We have proposed a novel cooling mechanism (DCDW

cooling) of hybrid stars, based on the idea of the in-

homogeneous chiral phase. It originates from the non-

perturbative effect of QCD at moderate densities. We

have shown that the beta decay process becomes possi-

ble in the DCDW phase due to the momentum supply

by DCDW at the weak-interaction vertex. The emissiv-

ity is estimated near the phase boundaries of the DCDW

phase to be the order of 1024−26T 6
9 (erg· cm−3s−1), which

value may be comparable with that by the quark cooling

[29] or pion cooling [31, 32]. Another important point is

that this mechanism works in the limited density region

where the DCDW phase appears. This feature is sim-

ilar to the Cooper pair-breaking-formation (PBF) pro-

cess, where the limited density region is efficient in the

superfluid phase [38].

If we incorporate this mechanism in the calculation

of the cooling curves of young neutron stars, further

works are needed which consider the realistic equation

of state (EOS) of cold catalyzed quark matter instead of

flavor symmetric quark matter and the numerical values

of emissivity over the whole region of the DCDW phase

without the restriction to the phase boundaries [39]. The

effects of the magnetic field is also an interesting subject,

since there should be large magnetic field inside com-

pact stars. The appearance of DCDW looks to be robust

and less model-dependent in the presence of the magnetic

field [20, 21, 40].

In this paper we considered the DCDW phase as a typ-

ical inhomogeneous chiral phase, but the similar mech-

anism may be possible for other configurations such as

RKC.

It is also interesting to seek for other phenomenolog-

ical implications of the inhomogeneous chiral phases by

considering their elasticity [41] or magnetic properties.
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Appendix A: Quark propagator in the DCDW phase

The quark propagator is given by

Si
W (p) =

1

p/−m+ γ5τ3q//2
≡ N i

D
, (A1)
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with i = u, d for τ3 = ±1, respectively, in the DCDW

phase within the mean-field approximation [12], where

the index W indicates that we define the new quark field

by way of the Weinberg transformation from the original

one,

ψW ≡ exp (iγ5τ3q · r/2)ψ. (A2)

The numerator N i is

N i = (p/+m−γ5τ3q//2)(p2−m2+ q2/4− (pq−mq/)γ5τ3),
(A3)

and the denominator D is

D = (p2 −m2 + q2/4)2 − ((pq)2 −m2q2). (A4)

The solutions for D = 0, which is a transcendental equa-

tion, give the four energies corresponding to positive and

negative solutions with two polarizations η = ±1: the

positive energy solutions are given by

E±
p =

√

E2
p + |q|2/4±

√

(p · q)2 +m2|q|2, (A5)

with Ep = (m2 + |p|2)1/2.
The density matrix for the positive-energy state is then

given as

ρ±i = ResSi
W (p)|p0=E±

p

=
(p/ +m− γ5τ3q//2)|p0=E±

p
(1± ŝ(p)τ3)

4E±
p

≡ Λ±
i

4E±
p
, (A6)

with ŝ(p) ≡ (p·q+mq/)γ5/
√

(p · q)2 +m2|q|2, ŝ2(p) = 1.

We can easily check

∑

p0=E±
p

ResSi
W (p) → p/+m

2Ep
, (A7)

as should be in the limit, q → 0. Thus the i quark

propagator can be written as

Si
W ≃

∑

η=±

ρηi
iωn − (Eη

p − µi)
, (A8)

once only the positive-energy state is relevant.

Appendix B: Quark tensor

We calculate the quark tensor Hµν
ηη′ which is given by

Hµν
ηη′ =

1

4
tr
[

Λη′

u γ
µ(1− γ5)Λ

η
dγ

ν(1− γ5)
]

. (B1)

From Eq. (A6) in Appendix A, the density matrix Λ±
i for

quark (i = u, d) is written as

Λη
i =

(

p/
η
i +m− γ5

τ3
2
q/
)

[

1 + η
(pi · q+mq/)γ5τ3
√

(pi · q)2 +m2|q|2

]

,

(B2)

where η = ±1, and τ3=1 (τ3 = −1) for i = u (i = d). The

four-vectors, pηi and q, are represented as pηi = (Eη
pi
, pi)

and qα = (0,q), respectively. After manipulation with

the Dirac matrices, one obtains

Λη
i =

(

m+A/ηi −
1

2

ηm
√

(pi · q)2 +m2|q|2
q/q/

)

+

(

Bη
i + C/ η

i + η
mτ3p/

η
i q/

√

(pi · q)2 +m2|q|2

)

γ5 , (B3)

where A/ηi = γµ(Aη
i )µ, C/

η
i = γµ(Cη

i )µ, and

Aη
i ≡ pηi + η

1

2
q

pi · q
√

(pi · q)2 +m2
i |q|2

, (B4a)

Bη
i ≡ ηm

pi · q τ3
√

(pi · q)2 +m2|q|2
, (B4b)

Cη
i ≡ ηpηi

pi · q τ3
√

(pi · q)2 +m2|q|2
+ η

m2q τ3
√

(pi · q)2 +m2|q|2
+

τ3
2
q , (B4c)

Substitution of Eq. (B3) into Λη′

u and Λη
d on the r.h.s.

of Eq. (B1) leads to

Hµν
ηη′ =

1

2
tr
[

(A/η
′

u +C/ η′

u )γµ(A/ηd +C/ η
d )γν(1− γ5)

]

. (B5)

By the use of the formulae, tr(γµγνγργσ) = 4(gµνgρσ −
gµρgνσ + gµσgνρ), tr(γµγνγργσγ5) = −4iǫµνρσ, where

ǫ0123 = −ǫ0123 = +1, one finally obtains

Hµν
ηη′ = 2[kη,µ1 kη

′,ν
2 − gµνkη1k

η′

2 + kη,ν1 kη
′,µ

2

+ iǫαµβνkη1αk
η′

2β ] , (B6)

where

kη1 =
(

pη1 −
q

2

)

(1− pη1Q
η
1) +m2Qη

1 ,

kη
′

2 =
(

pη
′

2 +
q

2

)(

1− pη
′

2 Q
η′

2

)

+m2Qη′

2 , (B7)

with Qη
i = −ηq/

√

(pη1q)
2 −m2q2. The spin polarization

for u quark is denoted as η′.
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Appendix C: Angular integral: near the onset

density of the DCDW

In Appendix C, we evaluate the angular integral Ã

[Eq. (41)],

Ã =

(

3
∏

i=1

∫

dΩi

)

(1− cos θ23)

∫

d3xei(p1−p2−p3−q)·x .

(C1)

Ã is separated into two parts: Ã = Ã1 + Ã2 with

Ã1 =

(

3
∏

i=1

∫

dΩi

)

∫

d3xexp [i(p1 − p2 − p3 − q) · x]

(C2)

and

Ã2 = −
(

3
∏

i=1

∫

dΩi

)

cos θ23

×
∫

d3xexp [i(p1 − p2 − p3 − q) · x] . (C3)

The Ã1 is represented by the use of the spherical Bessel

function j0(x) as

Ã1 =

∫

d3xe−iq·x(4π)3j0(|p1|x)j0(|p2|x)j0(|p3|x)

= (4π)4
∫ ∞

0

dxx2j0(|q|x)j0(|p1|x)j0(|p2|x)j0(|p3|x)

=
64π5

|p1||p2||q|
(C4)

for ||p1| − |p2|| + |p3| < |q| < |p1| + |p2| − |p3|. This

kinematical condition is met in the case near the onset

density, since |p1| ∼ |p2| ∼ µc1 = 0.49Λ ≫ |p3| ∼ µe,

and |q| = 0.55Λ (see Table I).

Next consider the Ã2. By expanding cos θ23 in terms

of the spherical harmonics, one has

Ã2 = −
∫

d3xe−iq·x(4π)j0(|p1|x)
∫

dΩ2

∫

dΩ3

× 4π

3

1
∑

M=−1

YM∗
1 (Ω2)Y

M
1 (Ω3)e

−i|p2|x cos θ2e−i|p3|x cos θ3

= (4π)4
∫ ∞

0

dxx2j0(|q|x)j0(|p1|x)j1(|p2|x)j1(|p3|x) ,
(C5)

where θi (i=2,3) is the angle between pi and x. With

|p3| ∼ µe ≪ µc1, numerical estimation shows Ã2 ≪ Ã1,

so that we can safely neglect the Ã2 in Ã as compared

with Ã1.

Appendix D: Angular integral: near the termination

density of the DCDW

In Appendix D, we evaluate the angular integrals,

B̃1, B̃2, B̃3, [Eq. (52)].

First we consider the B̃1:

B̃1 = −
(

3
∏

i=1

∫

dΩi

)

∫

d3x exp [i(p′
1 − p′

2 − p3) · x]

× |q|2
√

[(p′
1 + q/2) · q]2 +m2|q|2

. (D1)

The angular integration over p′
2 and p3 in Eq. (D1) gives

B̃1 = −4(2π)2|q|2
∫

d3xj0(|p′
2|x)j0(|p3|x)

×
∫

dΩ1
eip

′
1
·x

√

[(p′
1 + q/2) · q]2 +m2|q|2

. (D2)

Here the factor e−ip′
1
·x can be expanded in terms of the

spherical Bessel functions and the spherical harmonics as

eip
′
1
·x =

∑

L,M

(4π)iLjL(|p′
1|x)Y M∗

L (Ω1)Y
M
L (Ωx),(D3)

where we have taken as q//ẑ. Thus we can evaluate the

remaining angular integrations of p′
1 and x. By the use

of the relation,

∫

dΩxY
M
L (Ωx) = (4π)1/2δL,0δM,0, one

obtains

B̃1 = −64π3|q|2
∫ ∞

0

dxx2j0(|p′
1|x)j0(|p′

2|x)j0(|p3|x)

×
∫

dΩ1
1

√

(|p′
1||q| cos θ1 + |q|2/2)2 +m2|q|2

.(D4)

In Eq. (D4),
∫ ∞

0

dxx2j0(|p′
1|x)j0(|p′

2|x)j0(|p3|x) =
π

4|p′
1||p′

2||p3|
(D5)

for ||p′
1| − |p′

2|| < |p3| < |p′
1|+ |p′

2|, and
∫

dΩ1
1

√

(|p′
1||q| cos θ1 + |q|2/2)2 +m2|q|2

=
2π

|p′
1||q|

I(
|q|
2|p′

1|
,
m

|p′
1|
) (D6)

with

I(a, b) ≡ log

∣

∣

∣

∣

∣

a+ 1 +
√

(a+ 1)2 + b2

a− 1 +
√

(a− 1)2 + b2

∣

∣

∣

∣

∣

. (D7)

Substituting Eqs. (D5), (D6), (D7) into Eq. (D4), one

obtains

B̃1 ≃ −32π5 |q|
|p′

1|2|p′
2||p3|

log

(

2|q|
m

)

, (D8)
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where we have used |p′
1| ≃ |q|/2 and m≪ |p′

1|.
Second, the B̃2 is calculated in a way similar to the

case of the B̃1. The result is

B̃2 ≃ 32π5 |q|
|p′

1||p′
2|2|p3|

log

(

2|q|
m

)

. (D9)

Finally, we consider B̃3 :

B̃3 =

(

3
∏

i=1

∫

dΩi

)

∫

d3x exp [i(p′
1 − p′

2 − p3) · x]

× 2(p3 · q)
√

[(p′
2 − q/2) · q]2 +m2|q|2

. (D10)

The angular integration over p′
1 gives

B̃3 = 8π

∫

dxx2
∫

dΩxj0(|p′
1|x)

∫

dΩ2

∫

dΩ3

× 4π
∞
∑

L2=0

L2
∑

M2=−L2

(−i)L2jL2
(|p′

2|x)Y M2

L2
(Ω2)Y

M2∗
L2

(Ωx)

× 4π

∞
∑

L3=0

L3
∑

M3=−L3

(−i)L3jL3
(|p3|x)Y M3

L3
(Ω3)Y

M3∗
L3

(Ωx)

× |p3||q| cos θ3
√

(|p′
2||q| cos θ2 − |q|2/2)2 +m2|q|2

, (D11)

where the remaining two exponential factors,

exp(−ip′
2 · x) and exp(−ip3 · x) in Eq. (D10), have

been expanded in terms of the spherical Bessel functions

and the spherical harmonics. YM3∗
L3

(Ωx) in Eq. (D11)

is rewritten as YM3∗
L3

(Ωx) = (−1)M3Y −M3

L3
(Ωx). Then,

by the help of the orthonormality of the spherical

harmonics,

∫

dΩxY
M2∗
L2

(Ωx)Y
M3

L3
(Ωx) = δL2,L3

δM2,M3
,

Eq. (D11) reads

B̃3 = 128π3|p3||q|
∞
∑

L2=0

L2
∑

M2=−L2

(−1)L2

×
∫ ∞

0

dxx2j0(|p′
1|x)jL2

(|p′
2|x)jL2

(|p3|x)

×
∫

dΩ2

YM2

L2
(Ω2)

√

(|p′
2||q| cos θ2 − |q|2/2)2 +m2|q|2

×
∫

dΩ3(−1)M2Y −M2

L2
(Ω3) cos θ3 . (D12)

The last integral in Eq. (D12) with respect to the angle

of the p3 yields
√

4π/3δL2,1δM2,0. Thereby Eq. (D12)

reads

B̃3 = −128π3|p3||q|PQ , (D13)

where

P ≡
∫ ∞

0

dxx2j0(|p′
1|x)j1(|p′

2|x)j1(|p3|x)

=
π

8

|p′
2|2 + |p3|2 − |p′

1|2
|p′

1||p′
2|2|p3|2

(< 0) , (D14)

which is valid for ||p′
1| − |p′

2|| < |p3| < |p′
1|+ |p′

2|, and

Q ≡
∫

dΩ2
cos θ2

√

(|p′
2||q| cos θ2 − |q|2/2)2 +m2|q|2

=
2π

|p′
2||q|

J

( |q|
2|p′

2|
,
m

|p′
2|

)

(D15)

with

J(a, b) ≡
(

√

(1− a)2 + b2 −
√

(1 + a)2 + b2
)

+ aI(a, b) . (D16)

Since |p′
2| ≃ |q|/2 and m≪ |p′

2|, we have

Q ≃ π

|p′
2|2
[

log

(

2|q|
m

)

− 2

]

. (D17)

Substituting Eqs. (D14) and (D17) into Eq. (D13), one

finally obtains

B̃3 ≃ 16π5|q| |p
′
1|2 − |p′

2|2 − |p3|2
|p′

1||p′
2|4|p3|

×
[

log

(

2|q|
m

)

− 2

]

. (D18)
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