論文

査読有り
2019年10月15日

Applying virtual inertia control topology to SMES system for frequency stability improvement of low-inertia microgrids driven by high renewables

Energies
  • Kerdphol T
  • ,
  • Watanabe M
  • ,
  • Mitani Y
  • ,
  • Phunpeng V

12
20
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.3390/en12203902

© 2019 by the authors. To integrate renewable energy into microgrids with a favorable inertia property, a virtual inertia control application is needed. Considering the inertia emulation capabilities, insufficient emulation of inertia power due to the lower and short-term power of storage systems could significantly cause system instability and failure. To enhance such capability, this paper applies a virtual inertia control topology to the superconducting magnetic energy storage (SMES) technology. The SMES-based virtual inertia control system is implemented in a microgrid with renewables to emulate sufficient inertia power and maintain good system frequency stability. The efficacy and control performance of the proposed control method are compared with those of the traditional virtual inertia control system. Simulation results show that the shortage of system inertia due to renewable penetration is properly compensated by the proposed control method, improving system frequency stability and maintaining the robustness of system operations.

リンク情報
DOI
https://doi.org/10.3390/en12203902
URL
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075032625&origin=inward
ID情報
  • DOI : 10.3390/en12203902

エクスポート
BibTeX RIS