OHYAMA Yousuke

J-GLOBAL         Last updated: Mar 17, 2019 at 00:01
 
Avatar
Name
OHYAMA Yousuke
E-mail
ohyamatokushima-u.ac.jp
Affiliation
The University of Tokushima
Section
Graduate School of Information Science and TechnologyDepartment of Pure and Applied Mathematics
Degree
(BLANK)(Kyoto University)
Research funding number
10221839

Research Areas

 
 

Academic & Professional Experience

 
Apr 2017
   
 
Professor, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
 
Apr 2016
 - 
Mar 2017
Professor, Graduate School of Advanced Technology and Science, Tokushima University
 
Apr 2007
 - 
Mar 2016
Associated Professor, Graduated Schoole of Information Science and Technology, Osaka University
 
Apr 2002
 - 
Mar 2007
Assitant Professor, Graduated Schoole of Information Science and Technology, Osaka University
 
Apr 1998
 - 
Mar 2002
Lecturer, Graduate school of science, Osaka University
 
Apr 1990
 - 
Mar 1998
Research Assistant, Faculty of Science, Osaka University
 

Education

 
 
 - 
1990
Graduate School, Division of Natural Science, Kyoto University
 
 
 - 
1985
Faculty of Science, Kyoto University
 

Published Papers

 
OHYAMA Yousuke
J. Math. Tokushima Univ.   51 29-36   2017
OHYAMA Yousuke
J. Math. Tokushima Univ.   50 49-60   2016   [Refereed]
Y. Ohyama
Journal of Physics: Conference Series   597    Apr 2015
© Published under licence by IOP Publishing Ltd. We study meromorphic solutions to the q-Painleve equations with type VI, V, III around the origin. Since the origin of q-PVI, q-PVand q-PIIIare singular points of the q-Briot- Bouquet type, they hav...
OHYAMA Yousuke
Contemp. Math.   593 163-178   Jul 2013   [Refereed][Invited]
Kazuo Kaneko, Yousuke Ohyama
Mathematische Nachrichten   286 861-875   Jun 2013
We classify solutions of the third Painlevé equation \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}Tex\end{document}, which are meromorphic around the origin, and determine their linear monodromy. ...
On Particular solutions of q-Painlevé equations and q-hypergeometric equations
OHYAMA Yousuke
Painlevé Equations and Related Topics   247-251   Aug 2012
Monodromy Evolving Deformations and Confluent Halphen’s Systems
OHYAMA Yousuke
Painlevé Equations and Related Topics   129-136   Aug 2012
Yousuke Ohyama
AIP Conference Proceedings   1281 1712-1713   Dec 2010
Yousuke Ohyama
AIP Conference Proceedings   1714-1717 1714-1717   Dec 2010
The second q-Painlevé equation has two formal solutions around the infinity. This series converges only for |q|=1. If q is a root of unity, this series expresses an algebraic function. © 2010 American Institute of Physics.
Y. Ohyama and S. Okumura
Algebras Groups Geom.   27(4) 377-389   Dec 2010   [Refereed]
Yousuke Ohyama
Proceedings of the Japan Academy Series A: Mathematical Sciences   86 91-92   May 2010
The first q-Painlevé equation has a unique formal solution around the infinity. This series converges only for |q| = 1. If q is a root of unity, this series expresses an algebraic function. In cases that all coefficients are integers, it can be re...
OHYAMA Yousuke
RIMS Kokyuroku Bessatsu   B13 45-52   Oct 2009   [Refereed]
Monodromy evolving deformations and Halphen's equation
OHYAMA Yousuke
CRM Proceedings and Lecture Notes   47 343-348   Jul 2009   [Refereed]
OHYAMA Yousuke
RIMS Kokyuroku Bessatsu   B2 137-159   Mar 2007   [Refereed]
Kazuo Kaneko, Yousuke Ohyama
Funkcialaj Ekvacioj   50 187-212   Jan 2007
We study special solutions of the fifth Painlevé equation which are analytic around t=0. We calculate in particular the linear monodromy of those solutions exactly. We also show how those solutions are related to classical solutions in the sense o...
Yousuke Ohyama, Shoji Okumura
Journal of Physics A: Mathematical and General   39 12129--12151 12129-12151   Sep 2006
We revise Garnier-Okamoto's coalescent diagram of isomonodromic deformations and give a possible coalescent diagram from the viewpoint of isomonodromic deformations. We have ten types of isomonodromic deformations and two of them give the same typ...
Classical Solutions of Schlesinger equations and Twistor Theory
OHYAMA Yousuke
CRM Proceedings and Lecture Notes   31 61-68   Mar 2002   [Refereed]
OHYAMA Yousuke
Contemp. Math   309 185-193   Mar 2002   [Refereed]
OHYAMA Yousuke
Funkcial. Ekvac.   44(3) 377-389   Dec 2001   [Refereed]
Hypergeometric functions and non-associative algebras
OHYAMA Yousuke
CRM Proceedings and Lecture Notes   30 173-184   Dec 2001   [Refereed]

Misc

 
Classical solutions of Schlesinger equations and twistor theory
CRM Proceedings & Lecture Notes   31 51-58   2001
Nonlinear equations on theta constants of genus two.
Infinite Analysis, IIAS Reports   1997-001 109-116   1997
Differential equations of theta constants of genus two
Surikaiseki kenkyusho-Kokyuroku   968 93-103   Oct 1996
Connection formula of Airy-type equation
Surikaiseki kenkyusho-Kokyuroku   931 1-19   1995
Differential equations for modular forms with level three
Research Report in Mathematics (preprint)      1995
Differential equations whose solutions are given by theta functions
Surikaisekikenkyusho-Kokyuroku   854,57-64/,    1995
Differential Relations of Theta Functions
Osaka Journal of Mathematics   32 431-450   1993
On higher dimensional integrable systems with several spectral parameters
Surikaisekikenkyusho-Kokyuroku   763,1-7/,    1991
Publication of the Research Institute for Mathematical Sciences      1990
Hierarchy on higher dimensional integrable systems
Surikaisekikenkyusho-Kokyuroku   694,98-106/,    1989
D-modules and Grassmann manifolds II
Surikaisekikenkyusho-Kokyuroku   640,35-47/,    1988

Conference Activities & Talks

 
Nonlinear differential equations on theta constants [Invited]
OHYAMA Yousuke
Analyse Complexe et Equations Différentielles   18 Mar 2019   
Irregular singular points of q-difference equations
OHYAMA Yousuke
5 Jan 2019   
Connection Problem and q-Stokes phenomenon of basic hypergeometric series [Invited]
OHYAMA Yousuke
Formal and analytic solutions of functional equations on the complex domain   18 Dec 2018   
q-Stokes phenomenon on basic hypergeometric series [Invited]
OHYAMA Yousuke
The 13th Symmetries and Integrability of Difference Equations   12 Nov 2018   
From Heine to Painlevé: Connection problems of q-difference equations
OHYAMA Yousuke
Séminaire de systèmes dynamiques   16 Feb 2018   

Works

 
Painleve functions with solvable monodromy
2004
Non-abelian gauge fields and Painleve functions
2000
Asymptotic analysis of the Painleve equations from the viewpoint of differential Galois theory
2010

Research Grants & Projects

 
JSPS: Grant-in-Aid for Scientific Research(C)
Project Year: Apr 2016 - Mar 2019    Investigator(s): OHYAMA Yousuke
JSPS: Grant-in-Aid for Scientific Research(C)
Project Year: Apr 2013 - Mar 2016    Investigator(s): OHYAMA Yousuke
JSPS: Bilateral Joint Research Projects
Project Year: Apr 2013 - Mar 2015    Investigator(s): OHYAMA Yousuke
JSPS: Grant-in-Aid for Scientific Research(C)(2)
Project Year: Apr 2009 - Mar 2012    Investigator(s): OHYAMA Yousuke
The Mitsubishi Foundation: Research Grants in the Natural Sciences
Project Year: Oct 2010 - Sep 2011    Investigator(s): OHYAMA Yousuke
JSPS: Grant-in-Aid for Scientific Research(C)(2)
Project Year: Apr 2008 - Mar 2011    Investigator(s): OHYAMA Yousuke
JSPS: Bilateral Joint Research Projects
Project Year: Apr 2006 - Mar 2008    Investigator(s): OHYAMA Yousuke
The Sumitomo Foundation: Grant for Japan-related Research Project
Project Year: Apr 2003 - Mar 2004    Investigator(s): OHYAMA Yousuke
JSPS: Grant-in-Aid for Scientific Research(C)
Project Year: Apr 2000 - Mar 2003    Investigator(s): OHYAMA Yousuke
JSPS: Grant-in-Aid for Scientific Research on Priority Areas
Project Year: Apr 1993 - Mar 1994