MISC

2016年8月

A NECESSARY CONDITION FOR THE SMITH EQUIVALENCE OF G-MODULES AND ITS SUFFICIENCY

MATHEMATICA SLOVACA
  • Masaharu Morimoto

66
4
開始ページ
979
終了ページ
998
記述言語
英語
掲載種別
DOI
10.1515/ms-2015-0197
出版者・発行元
WALTER DE GRUYTER GMBH

Let G be a finite group. In this paper we give a new necessary condition for two real G-modules to be Smith equivalent if G has a normal Sylow 2-subgroup. We show that the condition is also sufficient under certain hypotheses. By results on the Smith equivalence obtained in this paper, the primary Smith sets are not subgroups of the real representation rings for various Oliver groups with normal Sylow 2-subgroups. (C) 2016 Mathematical Institute Slovak Academy of Sciences


リンク情報
DOI
https://doi.org/10.1515/ms-2015-0197
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000387226200020&DestApp=WOS_CPL

エクスポート
BibTeX RIS