MISC

2010年4月

Nontrivial P(G)-matched G-related pairs for finite gap Oliver groups

JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN
  • Masaharu Morimoto

62
2
開始ページ
623
終了ページ
647
記述言語
英語
掲載種別
DOI
10.2969/jmsj/06220623
出版者・発行元
MATH SOC JAPAN

In this paper we construct nontrivial pairs of G-related (i.e. Smith equivalent) real G-modules for the group G = P Sigma L(2, 27) and the small groups of order 864 and types 2666, 4666. This and a theorem of K. Pawalowski-R. Solomon together show that Laitinen's conjecture is affirmative for any finite nonsolvable gap group. That is, for a finite nonsolvable gap group G, there exists a nontrivial P(G)-matched pair consisting of G-related real G-modules if and only if the number of all real conjugacy classes of elements in G not of prime power order is greater than or equal to 2.

Web of Science ® 被引用回数 : 5

リンク情報
DOI
https://doi.org/10.2969/jmsj/06220623
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000277423500007&DestApp=WOS_CPL

エクスポート
BibTeX RIS