MISC

2017年3月1日

Cokernels of homomorphisms from burnside rings to inverse limits

Canadian Mathematical Bulletin
  • Masaharu Morimoto

60
1
開始ページ
165
終了ページ
172
記述言語
英語
掲載種別
DOI
10.4153/CMB-2016-068-6
出版者・発行元
Canadian Mathematical Society

Let G be a finite group and let A(G) denote the Burnside ring of G. Then an inverse limit L(G) of the groups A(H) for proper subgroups H of G and a homomorphism res from A(G) to L(G) are obtained in a natural way. Let Q(G) denote the cokernel of res. For a prime p, let N(p) be the minimal normal subgroup of G such that the order of G/N(p) is a power of p, possibly 1. In this paper we prove that Q(G) is isomorphic to the cartesian product of the groups Q(G/N(p)), where p ranges over the primes dividing the order of G.

リンク情報
DOI
https://doi.org/10.4153/CMB-2016-068-6

エクスポート
BibTeX RIS