MISC

2016年6月1日

Abiotic deposition of Fe complexes onto Leptothrix sheaths

Biology
  • Tatsuki Kunoh
  • Hideki Hashimoto
  • Ian R. McFarlane
  • Naoaki Hayashi
  • Tomoko Suzuki
  • Eisuke Taketa
  • Katsunori Tamura
  • Mikio Takano
  • Mohamed Y. El-Naggar
  • Hitoshi Kunoh
  • Jun Takada
  • 全て表示

5
2
記述言語
英語
掲載種別
DOI
10.3390/biology5020026
出版者・発行元
MDPI AG

Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II) to Fe(III) and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II) concentrations, Fe(III) precipitates visibly formed immediately after addition of Fe(II) to the medium, suggesting prompt abiotic oxidation of Fe(II) to Fe(III). Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III) was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II) medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter), while those in the Fe(III) medium were composed of large, aggregated particles (≥3 μm diameter) with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved) of Fe encrustation of the Leptothrix sheaths.

リンク情報
DOI
https://doi.org/10.3390/biology5020026
ID情報
  • DOI : 10.3390/biology5020026
  • ISSN : 2079-7737
  • SCOPUS ID : 84974533968

エクスポート
BibTeX RIS