論文

査読有り
2013年12月

Formation and ingression of division furrow can progress under the inhibitory condition of actin polymerization in ciliate tetrahymena pyriformis

Zoological Science
  • Yuhta Shimizu
  • ,
  • Yasuharu Kushida
  • ,
  • Shuhei Kiriyama
  • ,
  • Kentaro Nakano
  • ,
  • Osamu Numata

30
12
開始ページ
1044
終了ページ
1049
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.2108/zsj.30.1044
出版者・発行元
ZOOLOGICAL SOC JAPAN

In eukaryotic cells that multiply by binary fission, the interaction of actin filaments with myosin II in the contractile ring is widely recognized to generate force for membrane ingression into the cleavage furrow
however, the expression of myosin II is restricted in animals, yeast, fungi, and amoeba (collectively, unikonts). No corresponding motor protein capable of forming mini-filaments that could exert sufficient tension to cleave the cell body is found in bikonts, consisting of planta, algae, and most protozoa
however, cells in some bikont lineages multiply by binary fission, as do animal cells. Of these, the ciliate Tetrahymena is known to form an actin ring beneath the division furrow in cytokinesis. Here, we investigated the role of filamentous actin in the cytokinesis of Tetrahymena pyriformis by treating synchronized dividing cells with an actin-inhibiting drug, Latrunculin-A. Video microscopic observation of live cells undergoing cytokinesis was performed, and contrary to expectation, we found that initiation of furrow ingression and its progress are not suppressed under the inhibitory condition of actin polymerization in Tetrahymena cells. We suggest that an actin filament-independent mechanism of binary fission may have been acquired during the evolution in this organism. © 2013 Zoological Society of Japan.

リンク情報
DOI
https://doi.org/10.2108/zsj.30.1044
ID情報
  • DOI : 10.2108/zsj.30.1044
  • ISSN : 0289-0003
  • SCOPUS ID : 84890540804

エクスポート
BibTeX RIS