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The concept of adult hippocampal neurogenesis (AHN) has been widely accepted, and
a large number of studies have been performed in rodents using modern experimental
techniques, which have clarified the nature and developmental processes of adult
neural stem/progenitor cells, the functions of AHN, such as memory and learning,
and its association with neural diseases. However, a fundamental problem is that it
remains unclear as to what extent AHN actually occurs in humans. The answer to
this is indispensable when physiological and pathological functions of human AHN are
deduced from studies of rodent AHN, but there are controversial data on the extent of
human AHN. In this review, studies on AHN performed in rodents and humans will be
briefly reviewed, followed by a discussion of the studies in non-human primates. Then,
how data of rodent and non-human primate AHN should be applied for understanding
human AHN will be discussed.
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INTRODUCTION

Adult hippocampal neurogenesis (AHN) is now widely studied in the neuroscience field, because
newly born neurons induce large-scale neuronal circuit alterations that are reported to be involved
in learning and memory (Lledo et al., 2006; Treves et al., 2008; Kempermann, 2011; Drew et al.,
2013; Abrous and Wojtowicz, 2015), diseases, such as epilepsy, stroke, and mental disorders
(Danzer, 2012; Eisch and Petrik, 2012; Bowers and Jessberger, 2016; Toda et al., 2019), and the
regeneration of brain tissue (Sawada and Sawamoto, 2013; Jessberger, 2016; Peng and Bonaguidi,
2018). Such research progress has been achieved mostly in rodents using modern experimental
techniques, but has not been accomplished in humans, because the approaches that can be applied
to human research are limited.

Adult hippocampal neurogenesis in rodents was discovered in the 1960s by Joseph Altman
(Altman, 1963; Altman and Das, 1965), but this revolutionary concept had not been fully accepted
until the late 1990s (Gross, 2000; Altman, 2011; Kempermann, 2011; Seki, 2011). AHN was
rediscovered in the early and mid 1990s by the development of new techniques, such as the
labeling of newly generated cells by bromodeoxyuridine (BrdU), and immunohistochemistry using
an antibody for polysialylated neural cell adhesion molecule (PSA-NCAM) (Seki and Arai, 1993b,
1995; Kuhn et al., 1996).
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For demonstrating the existence of human AHN, the
BrdU-labeling technique clearly played an important role.
Eriksson et al. (1998) investigated postmortem hippocampi from
cancer patients who received a BrdU infusion for diagnostic
purposes, and demonstrated the presence of newly born
neuron that are BrdU-labeled cells costained with the neuronal
marker NeuN, indicating that neurons are born in the adult
human hippocampus.

However, subsequent studies using BrdU in humans have
not been performed to date, probably because of the toxicity
of BrdU. Instead, many immunohistochemical studies using
markers of stem/progenitor cells and immature neuronal markers
(INMs) have been performed on the human hippocampus
without BrdU labeling, and a large amount of data on human
AHN has been accumulated (Gould, 2007; Yuan et al., 2014;
Duque and Spector, 2019).

In recent years, an important question was raised as to
the extent of human AHN, because an immunohistochemical
study suggested a sharp decline in neurogenesis during the early
postnatal period, and an undetectable level of neurogenesis in
the adult human hippocampus (Sorrells et al., 2018), whereas
other reports suggest persistent AHN in humans (Boldrini et al.,
2018; Moreno-Jiménez et al., 2019; Tobin et al., 2019). These
studies resulted in many controversial debates (Kempermann
et al., 2018; Kuhn et al., 2018; Paredes et al., 2018; Tartt et al., 2018;
Oppenheim, 2019; Snyder, 2019), because solving this problem
is inevitable when physiological and pathological functions of
human AHN are inferred on the basis of data on rodent AHN.

In this article, I will review the studies on AHN in rodents
and humans, followed by those in non-human primates to fill the
gap between rodents and humans. Furthermore, interpretation of
the expression of INMs in these specimens to understand human
AHN will also be discussed.

AHN IN RODENTS

During the previous three decades, numerous studies on AHN
have been performed in mice and rats. Particularly in mice,
modern gene manipulation techniques demonstrated many
aspects of AHN, such as the properties of stem/progenitor
cells and their developmental processes and regulatory
mechanisms, as well as their function in diseases associated
with AHN (Gonçalves et al., 2016b; Semerci and Maletic-
Savatic, 2016; Hochgerner et al., 2018; Toda et al., 2019).
Therefore, most general knowledge of AHN comes from studies
performed in mice.

Properties of Adult Neural Stem Cells
To date, many studies on rodents have repeatedly indicated that
granule cells are generated in the subgranular zone (SGZ) of
the adult hippocampal dentate gyrus (DG), which is the narrow
band of cells between the granule cell layer (GCL) and the hilus.
The SGZ harbors adult neural stem cells (aNSCs) that express
the stem cell markers nestin and Sox2, and demonstrate a radial
morphology (Kriegstein and Alvarez-Buylla, 2009; Gebara et al.,
2016). Furthermore, aNSCs have astrocytic features, including

the expression of astrocyte markers, such as glial fibrillary acidic
protein, brain lipid-binding protein, and glutamate-aspartate
transporter (Seri et al., 2001), but not S100β expression (Seri
et al., 2004; Steiner et al., 2004). However, it should be noted that
although aNSCs express these molecular markers, not all cells
positive for these markers are aNSCs, because astrocytes and non-
aNSCs also express these markers (Von Bohlen Und Halbach,
2011; Zhang and Jiao, 2015).

Neuronal Differentiation of Neural Stem
Cells
Adult neural stem cells give rise to neurons via the proliferation
of intermediate progenitors or the transient amplification of
progenitor cells that can proliferate to self-renew a few times to
produce neurons. It has been reported that early proliferating
intermediate progenitor cells express Ascl1, Prox1, and Hu, and
that late proliferating intermediate progenitor cells express PSA-
NCAM, doublecortin (DCX), and NeuroD (Seki et al., 2007;
Von Bohlen Und Halbach, 2011; Kempermann et al., 2015;
Zhang and Jiao, 2015).

The morphology of neural progenitor cells differs from that
of mature granule cells. Neural stem/progenitor cells proliferate
and form clusters that contain from a few to more than 10
cells (Seki et al., 2007). The neuronal progenitor cells within the
clusters are round or ovoid cells with short processes that are
smaller than mature granule cells. These neural precursor cells
migrate horizontally in the SGZ, to become horizontally oriented
fusiform cells extending long horizontal processes (Seki et al.,
2007; Pilz et al., 2018). They then settle in their final position,
extending their thin apical dendrites.

Maturation of Neuronal Precursor Cells
During the maturation process, newly generated neurons
expressing INMs develop axons and branched dendrites, form
synapses on them, and finally become mature granule cells
(Hastings and Gould, 1999; Seki and Arai, 1999a,b; Brown et al.,
2003; Faulkner et al., 2008; Sultan et al., 2015; Gonçalves et al.,
2016a). Developing granule cells initially strongly express PSA-
NCAM, and have few synaptic contacts on the cell surface of
developing dendrites (Seki and Arai, 1999b) and axon terminals
(Seki and Arai, 1999a). The expression of PSA-NCAM and
DCX disappears from half of the newly generated cells by 4–
6 weeks after their birth (Seki, 2002; Brown et al., 2003), and
the developing granule cells become mature granule cells that
have synaptic contacts. Because PSA-NCAM is known to prevent
the formation of cell-cell contacts (Rutishauser, 2008), PSA-
NCAM may interfere with synapse formation during dendrite
development. The newly generated and developing granule cells
are reported to have high excitability (Doetsch and Hen, 2005;
Marin-Burgin et al., 2012), but the excitability decreases by
8 weeks after generation (Mongiat et al., 2009).

Aging and AHN
Many reports demonstrate that the level of rodent AHN declines
with age (Seki and Arai, 1995; Amrein et al., 2004; Ben Abdallah
et al., 2010; Lee et al., 2012). The number of proliferating (Ki67+,
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PCNA+) cells, INM+ (DCX+, PSA-NCAM+) cells, and BrdU-
labeled cells positive for neuronal markers are exponentially
decreased during 2–6 months of age in rodents. However,
thereafter, a small number of these cells persist during aging,
and can be detected even in aged rodents, suggesting that rodent
AHN occurs throughout life, but the level of AHN is low in
middle-aged rodents.

AHN IN HUMANS

Early Studies in the 1990s
The first suggestion of postnatal human neurogenesis was from
a study in 1994, in which immunohistochemical staining was
performed for PSA-NCAM in the structurally non-atrophic
brains of children with extrahippocampal seizures. The study
showed that in children with severe epilepsy, numerous PSA-
NCAM+ immature neurons exist in the SGZ and GCL of
the hippocampus of children younger than 2 years of age,
but such neurons decrease in number by 6–8 years of age,
and are undetectable in older children (>8 years of age)
(Mathern et al., 1994, 2002).

However, another study in 1998 that performed PSA-NCAM
immunohistochemistry on surgically removed hippocampi and
entorhinal cortices of patients with drug-refractory temporal
lobe epilepsy (mean age, 34 years) and autopsy controls
(mean age, 47 years) demonstrated that a substantial number
of PSA-NCAM+ cells are detectable in the SGZ of the
adult human hippocampus, and that the number decreases
in epileptic patients with severe neuronal damage (Mikkonen
et al., 1998). Similarly, another study reported that PSA-
NCAM+ cells were found in patients with Alzheimer disease
(mean age, 82 years) and control patients (mean age, 71 years)
(Mikkonen et al., 1999).

A study of postmortem human brains at the age of
7 months to 82 years with no obvious neuropathology
demonstrated that strongly PSA-NCAM+ immature granule
cells extending mossy fibers are found in the SGZ and GCL
by 3 years of age (Ni Dhuill et al., 1999). After that, the
number of PSA-NCAM+ cells decreased substantially,
but numerous PSA-NCAM+ hilar neurons appeared at
2–3 years of age and persisted until the eighth decade
of life. Although the exact reasons as to why the above
three studies are inconsistent regarding the presence or
amount of PSA-NCAM+ cells in adults remain unclear, it
may be owing to differences in patients (with or without
epilepsy), the severity of their seizures, sample conditions
(postmortem brains or surgically removed hippocampi), and
immunohistochemical methods.

A unique study of postmortem brains from adult cancer
patients (average age: 64.4 ± 2.9 years) injected with BrdU
for estimating the proliferation of tumor cells identified newly
generated neurons in the adult human hippocampus, which
had BrdU-labeled nuclei with NeuN+, calbindin+, and neuron
specific enolase+ cell bodies (Eriksson et al., 1998). However, the
extent of AHN, as reported in rodent quantitative fate-mapping
experiments, remained unclear.

Studies Between 2000 and 2017
As the use of BrdU is difficult in humans owing to its toxicity, for
the detection of stem cells, proliferating cells, neural progenitors,
and immature neurons in the human hippocampus, many
researchers have performed immunohistochemistry for several
molecular markers of proliferating cells, stem/progenitor cells,
and immature neurons, which suggested the presence of AHN
in the brains of healthy humans (Knoth et al., 2010; Dennis et al.,
2016; Mathews et al., 2017) and patients with epilepsy (Liu et al.,
2008), ischemia (Jin et al., 2006; Macas et al., 2006), Alzheimer
disease (Jin et al., 2004; Liu and Song, 2016), and psychiatric
diseases (Duque and Spector, 2019). Some studies have shown
distinct age-dependent alterations in AHN.

An immunohistochemical study on postmortem human
brains from birth to 100 years of age demonstrated that DCX+
cells are present in the SGZ and GCL during aging, but the
number of DCX+ cells declines exponentially, and becomes
very low by 2 years of age, and furthermore, that during aging,
the appearance of DCX+ cells changes; i.e., at younger ages,
DCX immunoreactivity is seen in apical dendrites, but at older
ages, it is distributed only around the nucleus, suggesting that
the expression pattern of DCX in the hippocampal neurogenic
region is altered qualitatively and quantitatively with aging
(Knoth et al., 2010).

Immunohistochemistry of Ki67 and DCX in the postmortem
brains of subjects between the age of 0.2 and 59 years has shown
that in infants, DCX+ cells are densely clustered in the GCL,
but Ki67+ proliferating cells are distributed throughout the DG
(Dennis et al., 2016). Thereafter, the number of clusters of DCX+
cells became very low by 3 years of age, and only a sparse
distribution of DCX+ cells was seen in older juveniles and adults.
Ki67+ proliferating cells were rarely seen in the SGZ. In addition,
it has been reported that the mRNA levels of Ki67 and DCX in the
healthy human hippocampus decreases throughout the lifespan
of a human (Mathews et al., 2017). These data suggest that human
AHN sharply decreases in infants.

New Techniques in the 2000s
In addition to immunohistochemical techniques, nuclear
magnetic resonance spectroscopy is used for non-invasively
detecting biomarkers that are enriched in neural stem cells and
neural progenitor cells in the live human brain, and has the
possibility of identifying and quantifying adult human neural
stem cells and progenitor cells (Bhardwaj et al., 2006; Manganas
et al., 2007; Castiglione et al., 2017).

Attention has also been paid to new alternative approaches
to estimate the levels of neurogenesis in humans, by measuring
the concentration of nuclear bomb test-derived 14C in genomic
DNA. Analysis using this method suggested that in adult humans,
700 new neurons are added to the hippocampus every day, and
a large subpopulation of hippocampal neurons is exchanged
throughout life, suggesting that humans and mice have similar
levels of AHN (Spalding et al., 2013). The 14C birth dating
method also showed the existence of neurogenesis in the
adult striatum, and its absence in the adult human neocortex
(Bhardwaj et al., 2006).
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Recent Conflicting Reports in 2018 and
2019
A recent study of postmortem brains from human fetal and
postnatal subjects, and surgically resected samples from epileptic
patients showed that the number of Ki67+/Sox2+ proliferating
progenitors and DCX+/PSA-NCAM+ young neurons in the DG
decrease sharply during the first year of life, and that neurogenesis
in adults is undetectable (Sorrells et al., 2018). This study caused
considerable debate (Kempermann et al., 2018; Kuhn et al., 2018;
Paredes et al., 2018; Tartt et al., 2018; Snyder, 2019).

Soon after the above study, a study on hippocampi collected on
autopsy demonstrated the persistence of proliferating neuronal
progenitors and immature neurons, despite a decrease in the
number of quiescent stem cells (Boldrini et al., 2018). An
immunohistochemical study using improved tissue processing
methods showed that AHN occurs frequently (Moreno-Jiménez
et al., 2019). These improved immunohistochemical techniques
revealed a substantial number of DCX+ cells in the human
DG. A subpopulation of DCX+ cells were positive for PH3,
Prox1, PSA-NCAM, calbindin, and calretinin, but they were
often found in the upper and middle parts of the GCL in
addition to the SGZ, which appears to resemble granule cells
undergoing dematuration, as reported previously (Hagihara et al.,
2019; Ohira et al., 2019). Persistent neurogenesis, which is shown
by the presence of Nestin+/Sox2+/Ki67+ neural progenitors,
DCX+/PCNA+ neuroblasts, and DCX+ immature neurons, was
also reported in older adults and to a lesser extent, in Alzheimer
disease patients (Tobin et al., 2019).

A part of the discrepancy in immunohistochemical studies
appears to be caused by differences in techniques and specimens
(Moreno-Jiménez et al., 2019). Most specimens were derived
from postmortem brains with different postmortem intervals
until fixation, as well as different methods of surgical removal of
tissue. Regarding immunohistochemistry, there are differences in
the methods of tissue preparation among the samples (paraffin or
cryostat sections), and immunohistochemical procedures varied
among the studies (with/without antigen retrieval pretreatment).

In this regard, a recent study using specimens surgically
removed and immediately fixed, and subjected to antigen
retrieval treatments clearly showed that a substantial number
of PSA-NCAM+ neurons are distributed densely below
the GCL, but the number of proliferating progenitors
(Ki67+/HuB+/DCX+ cells) were very low (Seki et al., 2019).
This suggests that immature-type neurons are not recently
generated neurons, and the level of hippocampal neuronal
production in adult humans is low. This conclusion raises
the question as to the identity of INM+ cells, which will be
discussed later.

AHN IN NON-HUMAN PRIMATES

Knowledge regarding AHN in non-human primates is expected
to bridge the gap between humans and rodents (Workman et al.,
2013; Charvet and Finlay, 2018), because (1) analysis of exact
cell division, and fate tracing using BrdU can be performed, (2)
non-human primates are evolutionally the most close relatives of

humans, and (3) some non-human primate species have a much
longer lifespan than rodents. The following information of the
ages of their first reproduction and the lifespan of non-human
primates was obtained from previous studies (Gould et al., 1997;
Amrein et al., 2011).

In the late 1990s, the occurrence of AHN in non-human
primates was demonstrated in some types of monkeys using
BrdU labeling and markers for proliferating cells (PCNA), mature
neurons (neuron-specific enolase, NeuN), and immature neurons
(TuJ1, TOAD-64). The first indication of AHN in an animal
close to primates was from treeshrews (Tupaia belangeri) at the
age of 7 months to 2.5 years (age at first reproduction = 4–
5 months, lifespan = up to 12 years in captivity) (Gould et al.,
1997). After that, the presence of AHN in non-human primates
was reported in common marmoset monkeys (Callithrix jacchus)
at the age of 3 years (age at first reproduction = 595 days,
average lifespan = 12 years) (Gould et al., 1998), and macaque
monkeys (Macaca mulatta and Macaca fasciculata) at the age
of 5.5–16.5 years (Kornack and Rakic, 1999) and at the age of
5–23 years (Gould et al., 1999), respectively (M. mulatta, age
at first reproduction = 1,279 days, average lifespan = 14 years;
Macaca fascicularis, age at first reproduction = 1,410 days, average
lifespan = 14 years).

In the 2000s, several reports on non-human primates
indicated that the AHN is affected by stress (Gould et al., 1998),
antidepressants (Perera et al., 2007), and ischemia (Tonchev et al.,
2003; Yamashima et al., 2004; Koketsu et al., 2006). Non-human
primate AHN may also be involved in memory and learning
(Aizawa et al., 2009), but AHN and learning ability are reported to
be moderately associated with each other (Ngwenya et al., 2015).

Absolute, but Not Relative,
Age-Dependent Decrease in Neuronal
Production
An early study in macaque monkeys showed that although
neuronal production was found in both young and aged
monkeys, the numbers of BrdU-labeled proliferating cells and
TOAD-64-expressing immature neurons were much lower in
aged monkeys than in young monkeys (Gould et al., 1999).
Thereafter, detailed quantitative studies repeatedly confirmed the
age-associated exponential decline in adult non-human primate
neurogenesis in common marmosets (Leuner et al., 2007) and
macaque monkeys (Aizawa et al., 2009, 2011; Amrein et al., 2011;
Ngwenya et al., 2015).

Comparison of the age-dependent decrease in neurogenesis
between rodents and non-human primates has demonstrated
an important hypothetical concept that the decrease in
neurogenesis, particularly proliferation of progenitor cells, is
regulated by absolute age, but not by relative age (Kornack
and Rakic, 1999; Amrein et al., 2011). There is a considerable
difference in lifespan between rodents and non-human primates,
i.e., the lifespan of mice and rats is 1.5–2.5 years, whereas the
lifespan of rhesus monkeys (M.mulatta) is 14 years. Nevertheless,
in both rodents and monkeys, the numbers of proliferating cells
are exponentially reduced by 2–3 years of age, although at 2 years
of age, rodents are aged animals, but rhesus monkeys are infants.
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Thus, a decrease in postnatal neurogenesis occurs in rodents at
middle to older stages, but in macaque monkeys at infant stages.

Prolonged Maturation of Newly
Generated Neurons in Non-human
Primates
The detailed developmental processes of the generation of new
neurons in rhesus monkeys have been reported (Ngwenya et al.,
2006, 2008, 2015; Kohler et al., 2011). An important phenomenon
in non-human primates is the prolonged time required for the
maturation of newly generated granule cells compared with
rodents. The period required for maturation was estimated using
the time when the expression of INMs, i.e., PSA-NCAM and
DCX, disappears from BrdU-labeled newly generated cells.

In rodents, most new BrdU-labeled neurons lost PSA-
NCAM and DCX immunoreactivity by 1–1.5 months after
BrdU injection, indicating that the maturation of newly born
granule cells occurs by 1–1.5 months (Seki, 2002; Brown et al.,
2003; Kempermann et al., 2003). However, in the case of
adult macaque monkeys, only half of the BrdU-labeled newly
generated neurons lost their DCX expression by 6 months, and
during this time period, new neurons continued to develop their
dendrites, suggesting that maturation of new granule cells at the
structural and molecular levels takes more than 6 months (Kohler
et al., 2011; Ngwenya et al., 2015). This suggests that newly
generated neurons in non-human primates have substantial
plasticity during a long period. This prolonged immature state
may compensate for the decrease in plasticity caused by a rapid
decrease in neurogenesis in non-human primates.

Furthermore, a recent report has shown that an increase in
DCX+ dentate granule cells without an increase in neuronal
production is induced by fluoxetine treatment in the common
marmoset, which suggests that mature granule cells are able to
re-express INMs, which is a phenomenon called dematuration
(Ohira et al., 2019).

VALIDITY OF INMS AS PROXY
MARKERS FOR ADULT NEUROGENESIS

Not all PSA-NCAM and DCX-expressing neurons are newly
generated neurons in the adult brain. The existence of PSA-
NCAM+ and DCX+ neurons in non-neurogenic regions of the
adult brain has been reported in various mammals, including
rodents, non-human primates, and humans (La Rosa et al., 2019).
BrdU-labeling studies clearly demonstrated that the INM+
neurons in non-neurogenic regions are generated during the
embryonic periods (Gómez-Climent et al., 2008; Luzzati et al.,
2009; Rubio et al., 2016).

In adult mice, rats, guinea pigs, and rabbits, PSA-NCAM+
and DCX+ cells are found in the paleocortex (piriform and
entorhinal cortices) (Seki and Arai, 1991; Bonfanti et al., 1992;
Nacher et al., 2001; Gómez-Climent et al., 2008; Klempin
et al., 2011), cingulate cortex (Gómez-Climent et al., 2011),
association cortex (Luzzati et al., 2009), and spinal cord
(Seki and Arai, 1993a). Additionally, it was also reported
that even in the hippocampus, PSA-NCAM+ neurons are

seen in non-neurogenic regions, such as the hilus, CA1/3,
and subiculum (Nacher et al., 2002). These accumulated data
indicate that PSA-NCAM+ and DCX+ cells in these non-
neurogenic regions consist of a subpopulation of interneurons,
and have immature characteristics in their structures, including
less dendritic arborization, spine density, and synaptic contacts
(Gómez-Climent et al., 2008, 2011; Guirado et al., 2014). A recent
fate-mapping study using DCX-CreERT2/Flox-EGFP transgenic
mice demonstrated that DCX+ neurons in the adult piriform
cortex progressively resume the development of dendrites, axons,
and synaptic contacts during aging (La Rosa et al., 2019).

INM+ cells in non-neurogenic regions are also observed
in mammals with a large brain and long lifespan. In adult
sheep, a study using INMs and BrdU labeling demonstrated
that DCX+ cells are present in the external capsule and the
surrounding gray matter (claustrum and amygdala), in addition
to the piriform cortex and neocortex (Piumatti et al., 2018).
In non-human primates, DCX+ neurons are found in non-
neurogenic regions, such as the amygdala, entorhinal cortex,
inferior temporal gyrus, and medial orbital gyrus (Zhang et al.,
2009). DCX+ neurons generally coexpress PSA-NCAM, and
some of them express neuron-specific nuclear protein and
γ-aminobutyric acid, suggesting that they contain interneurons.
Furthermore, similarly to INM+ cells in the neurogenic
region, these cells demonstrate an age-dependent decrease in
number. It has been proposed that mammals with a large
brain and long lifespan have more INM+ non-newly generated
neurons than mammals with a small brain and short lifespan
(La Rosa et al., 2019).

In humans, DCX+ and PSA-NCAM+ cells have been
identified in non-neurogenic regions of the neocortex (Varea
et al., 2007; Srikandarajah et al., 2009), amygdala (Sorrells et al.,
2019), and brain stem (Yoshimi et al., 2005). Furthermore, PSA-
NCAM+ cells have been found in the non-neurogenic regions of
the hippocampal formation, such as the CA1/3, subiculum, and
entorhinal cortex (Mikkonen et al., 1998, 1999; Seki et al., 2019).

Although the exact nature and function of these INM+ cells
in non-neurogenic regions remain unclear, some interesting
hypotheses have been proposed, for example, the cells are in
a state of arrested development (Gomez-Climent et al., 2010),
in the process of continuous maturation of dormant precursors
(Rotheneichner et al., 2018), and are a reservoir of young cells for
the adult/aging brain (La Rosa et al., 2019).

Doublecortin and PSA-NCAM are generally used as proxy
markers for AHN, but they should be considered as markers
indicating immaturity or plasticity among both newly generated
neurons and non-newly generated neurons. DCX, a microtubule-
associated protein that is involved in the extension of
neuronal processes, and PSA-NCAM, a cell-surface molecule
that is implicated in cell movement and recognition of
the cell surface, may be required for structural changes
of both newly generated and non-newly generated neurons.
Therefore, it should be noted that the level of neuronal
production and neurogenesis cannot be evaluated solely by
immunohistochemistry for INMs, and also that DCX, as
well as PSA-NCAM, are not faultless molecular markers
in terms of detecting newly or recently generated neurons
(Verwer et al., 2007).
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THE REAL STATE OF HUMAN AHN

What do the studies on rodent and non-human primate AHN
tell us about the real state of human AHN? These studies show
the following: (1) proliferation of neural progenitor cells to
produce new granule neurons in the SGZ of the hippocampus
is decreased with absolute age, but not with relative age,

which suggests that neuronal production in the human SGZ is
also decreased with absolute age, as in non-human primates,
(2) the maturation period of newly generated granule cells is
much longer in primates than in rodents, which suggests that
newly generated dentate granule cells in humans have a longer
maturation period than those in rodents, and possibly than
those in non-human primates, (3) INM+ cells in non-newly

FIGURE 1 | A new hypothetical model of the real state of human adult hippocampal neurogenesis. (A) Changes in the levels of neuronal production, immature
neuronal marker-positive (INM+) newly generated neurons, and INM+ neurons in the adult human SGZ during aging. (B) The origin of INM+ neurons in the adult
human hippocampus. NP, proliferating neural progenitor cells.
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generated cells are detected in several adult brain regions
of several mammalian species, which suggests the possible
existence of similar immature-type neurons in the human hilus,
SGZ, and GCL, in addition to INM+ adult-born or recently
generated granule cells.

Although there are conflicting conclusions on human AHN,
there is some agreement, as follows: (1) postnatal neuronal
production in the SGZ occurs at a substantial level up to a
few years after birth, but declines sharply, and (2) a substantial
number of INM-expressing neurons exist in the adult human
SGZ, although the detection of DCX+ cells depends on
immunohistochemical methods, particularly antigen retrieval
procedures (Figure 1A).

With the cumulative knowledge from rodents, non-human
primates, and humans, as well as the data from our recent
study in humans (Seki et al., 2019), I have developed a
hypothesis about the real state of human AHN (Figure 1). In
humans, there are at least two stages of postnatal hippocampal
neurogenesis, i.e., the infant stage with a substantial level of
neuronal production, and the adult stage with a very low level
of neuronal production and a substantial number of INM-
expressing cells, although the exact change in the number
of INM+ cells during infant to adult stages is unknown.
Additionally, regarding the origin of INM-expressing cells in
the SGZ of the adult human hippocampus, there are three
possible origins. The INM-expressing neurons are derived from
(1) neurons with prolonged INM expression that are generated
by adult neural progenitor cells and continue to express INMs
over a prolonged period of time, (2) INM-expressing arrested
neurons that are produced by embryonic neural progenitor cells
and maintain immaturity, such as INM expression, and (3) INM-
re-expressing neurons that are converted from mature or INM-
negative adult neurons that are generated during the embryonic
period (Figure 1B). Even though INM-expressing cells in the
human adult hippocampus have different origins, they may have
similar plasticity and compensate for the decline in plasticity by a
low level of neurogenesis.

APPLICATION OF RODENT STUDIES TO
UNDERSTAND HUMAN “POSTNATAL”
HIPPOCAMPAL NEUROGENESIS

Next, I would like to propose some possible roles of “infant” and
“adult” human hippocampal neurogenesis. In other words, there
are possible ways to apply the vast accumulating knowledge about
rodent AHN to understanding the functions of human AHN.
Are learning and memory functions associated with postnatal
neurogenesis in humans? An important point in postnatal
neurogenesis is that new neurons are born and develop under
circumstances in which various environmental sensory stimuli
and locomotion information are inputted into hippocampal
neuronal circuits (Lledo et al., 2006). This is very different from
the condition of prenatal neurogenesis, which is not affected in
principle by these inputs. In this sense, there is no difference
between AHN in rodents and early postnatal neurogenesis
in humans. Even though hippocampal neuronal production is

limited to the early postnatal period in humans, studies on adult
rodent neurogenesis are still worth performing to understand
neurogenesis-associated learning and memory mechanisms in
humans during the early postnatal period, when infants receive
various sensory inputs every day and learn effectively from their
experiences. Another possibility is that even if a very small
number of neurons are newly generated in the adult human
hippocampus, the accumulation of these new neurons, which
have prolonged expression of INMs, must play important roles
in memory and learning.

Do diseases affect postnatal neurogenesis in humans? Epilepsy
is well known to be induced more frequently in children than
in adults in humans (Holmes, 1997; Porter, 2008). Epileptic
seizures should cause abnormal structural changes in newly
generated neurons in infants and children, as in adult rodents,
and subsequently must induce serious brain damage in the adult
human hippocampus. Even if most PSA-NCAM+ and DCX+
cells in the adult human hippocampus are not recently generated
neurons, these neurons that have higher plasticity than mature
neurons can be easily altered structurally and physiologically by
an epileptic state. In fact, in both epileptic patients and epileptic
model rodents, the abnormal structure of PSA-NCAM+ neurons
are very similar to each other (Seki et al., 2019). Furthermore,
some diseases, such as Alzheimer disease (Tobin et al., 2019)
and epilepsy (Seki et al., 2019), are reported to show a decrease
in the number of INM+ neurons, regardless of whether the
INM+ cells are recently generated neurons or non-recently
generated neurons.

Taken together, studies on AHN are entering a new era, in
which knowledge of rodent studies are not simply applied to
understand human AHN, but species differences in brain size,
lifespan, and ways of life, and identity of INM-expressing cells
must be considered to understand the true state and function of
human AHN (Amrein et al., 2011; Faykoo-Martinez et al., 2017;
La Rosa et al., 2019; Oppenheim, 2019; Seki et al., 2019; Snyder,
2019). Furthermore, comprehensive analyses of postnatally born
neurons, both in infants and in adults, and INM-expressing
neurons, regardless of their origin, will enable us to understand
the state and function of human AHN and plasticity.
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