論文

査読有り
2014年1月

Application of dedifferentiated fat cells for periodontal tissue regeneration

HUMAN CELL
  • Atsunori Sugawara
  • ,
  • Soh Sato

27
1
開始ページ
12
終了ページ
21
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1007/s13577-013-0075-6
出版者・発行元
SPRINGER JAPAN KK

Periodontal diseases result from inflammation by bacterial infection in plaques, leading to tooth loss. However, regenerative approaches with periodontal tissue regeneration by guided tissue regeneration and enamel matrix derivative are not yet well established. Tissue regeneration requires three factors: cells, scaffold, and growth factors. Dedifferentiated fat cells (DFATs) are pluripotent with the same differentiation capacities as mesenchymal stem cells (MSCs). Access to MSCs is limited, whereas donor cells for DFATs are abundant in adipose tissues and can be non-invasively obtained. Therefore, we tested DFATs as a new source for periodontal tissue regeneration in an experimental periodontal tissue loss model in rats by transplanting DFATs on an atelocollagen scaffold using DFATs isolated from Sprague-Dawley (SD) rats expressing green fluorescent protein (GFP). GFP-DFAT cells were transplanted on the palatal side of the upper left first molar in SD rats and detected by H&E staining, GFP, and proliferating cell nuclear antigen (PCNA) expression. DFAT differentiation was also evaluated in three-dimensional cultures. GFP positive cells were detected in the regenerated tissue by the DFATs/scaffold mixture at 4 weeks after transplantation, and PCNA-positive cells were significantly increased in the periodontal ligament along the new bone in the DFATs/scaffold group more than in the scaffold-only group, suggesting that DFATs differentiate in the same manner as MSCs and regenerate in the defective areas. Consistent with previous reports, DFATs differentiation was slower than that with stem cells. The present study demonstrates that DFATs are pluripotent and an effective new source of cells for periodontal tissue regeneration.

Web of Science ® 被引用回数 : 12

リンク情報
DOI
https://doi.org/10.1007/s13577-013-0075-6
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000333349800003&DestApp=WOS_CPL