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1 Introduction

In this paper we discuss the following problem for logistic equations with diffusion and nonlocal
effects:

(P)


ut = d∆u+ u

(
a− bu−

∫
Ω

k(x, y)u(y, t)dy

)
in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(·, 0) = u0 in Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, a, d are positive constants,
b is a nonnegative constant, k ∈ C(Ω × Ω) is a nonnegative function and u0 is a nonnegative
function. In (P), u denotes the population density of a certain species. Usually, the dynamics
of the population density is governed by a logistic diffusion equation (without nonlocal terms).
If k ≡ 0 in (P), it is well known that there exists a unique global solution u and that

lim
t→∞

u(·, t) =

{
0 uniformly in Ω if 0 < a ≤ dλ1,

θ uniformly in Ω if a > dλ1,

where λ1 is the principal eigenvalue of −∆ with homogeneous Dirichlet boundary condition and
θ is a unique positive stationary solution (which exists if and only if a > dλ1). However, it is
sometimes reasonable to take account of nonlocal effects since each individual species interacts
either visually or by chemical means in a real world. So we will discuss a logistic diffusion
equation by adding a nonlocal reaction term as in (P).

Our main purpose is to investigate the difference or similarity between local problems and
nonlocal problems for logistic diffusion equations. In particular, we are interested in the follow-
ing points:

(a) Existence and uniqueness of bounded global solutions for (P),
(b) Asymptotic behavior of global solutions as t → ∞,
(c) Structure of positive solutions for the corresponding stationary problem:

(SP)

d∆u+ u

(
a− bu−

∫
Ω

k(x, y)u(y)dy

)
= 0 in Ω,

u = 0 on ∂Ω.
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For semilinear elliptic equations with nonlocal terms, there are a lo of works (see, e.g, [1], [2],
[3], [6], [8]). In most papers, existence of positive solutions has been established with use of
bifurcation theory or the Leray-Schauder degree theory. Here we will give a very elementary
method to construct a positive stationary solution to (SP).

The contents of the present paper are as follows. In Section 2, we will show that (P) admits
a unique global solution for any nonnegative initial data in a suitable class. Section 3 is devoted
to the analysis of (SP). We will look for a positive solution of (SP) by a constructive manner.
Finally, some remarks are given in section 4.

Notation. We denote by Lp(Ω) the space of measurable functions u : Ω → R such that
|u(x)|p is integrable over Ω with norm

∥u∥p :=

{∫
Ω

|u(x)|p dx

}1/p

.

For p = 2, we simply write ∥ · ∥ in place of ∥ · ∥2. By W k,p(Ω), we denote the Sobolev space of
functions u → R such that u and its distributional derivatives up to order k belong to Lp(Ω).
Its norm is defined by

∥u∥p
Wk,p =

∑
|ρ|≤k

∥Dρu∥pp,

where ρ denotes a multi-index for derivatives.

2 Existence of global solutions

We will discuss (P) in the framework of Lp(Ω) with p > 1. Define a closed linear operator A in
Lp(Ω) by

Au = −d∆u with domain D(A) = W 2,p(Ω) ∩W 1,p
0 (Ω).

Then it is well known that −A generates an analytic semigroup {e−tA}t≥0 in Lp(Ω) (see, e.g.,
[9, 11]). Our problem (P) can be written as{

ut +Au = f(u, ℓ(u)),

u(0) = u0,
(2.1)

where

f(u, v) = u(a− bu− v) with ℓ(u) =

∫
Ω

k(x, y)u(y)dy.

For (2.1) we can prove the following local existence theorem:

Theorem 2.1. Let p > max{1, N/2}. For any u0 ∈ Lp(Ω), there exists a positive number T
such that (2.1) has a unique solution u in the class

u ∈ C([0, T ];Lp(Ω)) ∩ C((0, T ];W 2,p(Ω)) ∩ C1((0, T ];Lp(Ω)).

Proof. The proof is standard. The first procedure is to rewrite (2.1) in the form of integral
equation

u(t) = e−tAu0 +

∫ t

0

e−(t−s)Af(u(s), ℓ(u(s)))ds. (2.2)

The second procedure is to apply Banach’s fixed point theorem to (2.2) in order to show the
existence and uniqueness of a local solution. For details, see [9] or [11].
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In what follows we assume
u0 ∈ L∞(Ω) (2.3)

and establish the global existence theorem.

Theorem 2.2. Let p > max{1, N/2} and assume (2.3).
(i) If b > 0, then (2.1) has a unique solution u in the class

u ∈ C([0,∞);Lp(Ω)) ∩ C((0,∞);W 2,p(Ω)) ∩ C1((0,∞);Lp(Ω)).

Moreover, u satisfies

0 ≤ u(x, t) ≤ max
{
∥u0∥∞,

a

b

}
for all (x, t) ∈ Ω× [0,∞).
(ii) If b = 0, then (2.1) has a unique solution u in the same class as (i). Moreover, if there
exists a positive constant k0 such that k(x, y) ≥ k0 for all x, y ∈ Ω, then

0 ≤ u(x, t) ≤ m

with a positive number m for all (x, t) ∈ Ω× [0,∞).

Proof. (i) Since u0 ≥ 0, it is easy to show by the maximum principle for parabolic equations
(see [12]) that u(·, t) ≥ 0 as long as it exists. Therefore, u satisfies

ut ≤ d∆u+ u(a− bu) in Ω× [0, T ),

where T is a maximal existence time. The comparison theorem for parabolic equations enables
us to show that

u ≤ max

{
∥u0∥∞,

b

a

}
for (x, t) ∈ Ω× [0, T ). Hence we can conclude T = ∞ and obtain a required estimate.

(ii) We will show the uniform boundedness of the solution u in case k ≥ k0. Integrating the
first equation of (P) leads to

d

dt

∫
Ω

u(x, t)dx = d

∫
Ω

∆u(x, t) + a

∫
Ω

u(x, t)dx−
∫
Ω

u(x, t)ℓ(u(t))dx

= d

∫
∂Ω

∂u

∂n
dσ + a

∫
Ω

u(x, t)dx−
∫
Ω

u(x, t)

(∫
Ω

k(x, y)u(y, t)dy

)
dx

< a

∫
Ω

u(x, t)dx− k0

(∫
Ω

u(x, t)dx

)2

.

(2.4)

Here we have used ∂u/∂n|∂Ω < 0 by the strong maximum principle (see [12]). Solving differen-
tial inequality (2.4) we get ∫

Ω

u(x, t)dx ≤ max

{
∥u0∥1,

a

k0

}
. (2.5)

Since |ℓ(u)| ≤ k∞∥u∥1 with k∞ = sup{k(x, y); x, y ∈ Ω}, we see

∥f(u, ℓ(u))∥1 = ∥u(a− ℓ(u))∥1 ≤ a∥u∥1 + k∞∥u∥21;

so that it follows from (2.5) that

sup
t≥0

{∥f(u(t), ℓ(u(t)))∥1} = m1.

In order to derive uniform boundedness of u(t), it is sufficient to use Lp − Lq estimates for
{e−tA}t≥0 with p, q ∈ [1,∞] and follow the arguments developed in the work of Rothe [13]. So
we omit the rest of the proof.
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3 Stationary positive solutions

In this section we will study (SP) associated with (P). In particular, we are interested in positive
stationary solutions and look for them in the case

k(x, y) = p(x)q(y), (3.1)

where p, q( ̸≡ 0) are nonnegative continuous functions in Ω. So our problem is written as follows:
d∆u+ u

(
a− bu− p(x)

∫
Ω

q(y)u(y)dy

)
= 0 in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(3.2)

where a, d are positive constants, b is a nonnegative number. Lots of authors (e.g., [1], [2], [3].
[6], [8]) have discussed the existence of positive solutions for semilinear elliptic equations with
nonlocal terms by means of bifurcation theory, the Leray-Schauder degree theory and monotone
methods. Among them, Corréa, Delgado and Suárez [2] have studied (3.2) in case b = 0 and
obtained an interesting result.

Theorem 3.1. ([2]) Assume that Ω0 := Int{x ∈ Ω; p(x) = 0} is connected. Then (3.2) has a
unique positive solution u if and only if{

a ∈ (λ1,Ω,∞) in case Ω0 = ∅,
a ∈ (λ1,Ω, λ1,Ω0

) in case Ω0 ̸= ∅.

Here λ1,D stands for the principal eigenvalue of the following eigenvalue problem

−∆u = λu in D with u = 0 on ∂D.

We will briefly explain the idea of the proof of Theorem 3.1. Let u be a positive solution of
(3.2) with b = 0. If we put

α =

∫
Ω

q(x)u(x)dx, (3.3)

we can rewrite (3.2) in the following form
−d∆u+ αp(x)u = au in Ω,

u = 0 on ∂Ω,

u > 0 in Ω.

(3.4)

Since u is a positive definite function, a must be identical with the principal eigenvalue of the
following eigenvalue problem

−d∆u+ αp(x)u = λu in Ω and u = 0 on ∂Ω. (3.5)

If we denote by λ1(αp) the principal eigenvalue of (3.5), we have only to find α satisfying
λ1(αp) = a.

It is well known that λ1(αp) can be expressed by the following variational characterization

λ1(αp) = inf

{
d

∫
Ω

|∇u|2dx+ α

∫
Ω

p(x)u2dx;u ∈ H1
0 (Ω), ∥u∥2 = 1

}
. (3.6)

It should be noted that λ1(αp) has the following properties:
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Lemma 3.1. Let p( ̸≡ 0) be a nonnegative continuous function in Ω and assume that Ω0 is
connected. Then the following properties hold true.
(i) The mapping α → λ1(αp) is continuous and strictly increasing for α ≥ 0.
(ii) lim

α→0
λ1(αp) = λ1(0) = λ1,Ω.

(iii) lim
α→∞

=

{
∞ in case Ω0 = ∅,
λ1,Ω0 in case Ω0 ̸= ∅.

Proof. Assertions (i) and (ii) come from (3.6). For the proof of (iii), see López-Gómez [10].

In order to find a positive solution u of (3.2), it is sufficient to look for α∗ satisfying λ1(α
∗p) =

a for given a. Then u can be obtained as u = cφ with positive constant c, where φ is a positive
eigenfunction of (3.5) corresponding to λ1(α

∗p). In view of (3.3), positive constant c can be
determined from

α∗ = c

∫
Ω

q(x)φ(x)dx.

Therefore, it is easy to prove Theorem 3.1 if we use Lemma 3.1.

We now discuss the existence of positive solutions of (3.2) in case b > 0. Let u be a positive
solution of (3.2). If we define α by (3.3), then the first equation of (3.2) can be written as{

−d∆u+ αp(x)u = u(a− bu) in Ω,

u = 0 on ∂Ω.
(3.7)

Our strategy is to look for a positive solution θ(x : αp) for (3.7) for each α ≥ 0 and determine
α from

α =

∫
Ω

q(x)θ(x;αp)dx. (3.8)

In place of (3.7) we will study the existence of positive solutions for the following auxiliary
problem: 

−d∆u+m(x)u = u(a− bu) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(3.9)

where a, b, d are positive constants and m : Ω → R is a nonnegative continuous function. We
have the following result.

Proposition 3.1. Let m be a nonnegative continuous function in Ω. Then (3.9) has a unique
positive solution θ(x;m) if and only if a > λ1(m). Moreover, if m1 ≥ m2 (m1 ̸≡ m2), then
θ(x;m2) > θ(x;m1) for x ∈ Ω.

Proof. Since λ1(m) is the principal eigenvalue, one can choose a positive eigenfunction φ(x;m)
corresponding to λ1(m) such that

max
x∈Ω

φ(x;m) = 1 and φ(x;m) > 0 in Ω.

If we set u∗(x) = c1 with positive constant c1 satisfying c1 ≥ a/b, then we see that u∗ is a
supersolution of (3.9). We next take

v∗(x) = εφ(x;m) with positive constant ε.
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Then
−d∆v∗ + v∗(m(x)− a+ bv∗) = ϵφ(x;m)(λ1(m)− a+ bεφ(x;m)).

Hence, if a > λ1(m), one can take a sufficiently small ε > 0 such that bε ≤ a− λ1(m). In this
case,

−d∆v∗ + v∗(m(x)− a+ bv∗) ≤ 0;

that is, v∗ is a subsolution of (3.9). Thus we can construct a supersolution u∗ and a subsolution
v∗ satisfying u∗ ≥ v∗. Hence it follows from the result of Sattinger [14] that (3.9) has a positive
solution.

The proofs of the necessity part and the uniqueness of positive solutions are standard; so
we omit them.

Finally, we will prove the order preserving property. Let m1 ≥ m2; then θ(x;m2) is a
supersolution of (3.9) with m = m1. Therefore

θ(x;m2) ≥ θ(x;m1) in Ω.

Moreover, if we set w(x) = θ(x;m2)− θ(x;m1), then w satisfies{
−d∆w +m2w + w{b(θ(x;m1) + θ(x;m2))− a} ≥ 0 in Ω,

w = 0 on ∂Ω.

Therefore, one can apply the strong maximum principle ([12]) to conclude w > 0 in Ω.

We are ready to study (3.2) in case b > 0. It follows from Proposition 3.1 that (3.7) has a
unique solution θ(x;αp) if and only if

a > λ1(αp). (3.10)

Here we should recall basic properties of λ1(αp) as a function of α (see Lemma 3.1).
In what follows, assume

a > dλ1,Ω. (3.11)

Then it is possible to find a unique ᾱ > 0 satisfying a = λ1(ᾱp) in case Ω0 = ∅. In case Ω0 ̸= ∅,
if we additionally assume a < dλ1,Ω0 ; then it is also possible to find ᾱ which satisfies the same
property as above. When a satisfies a ≥ dλ1,Ω0 in case Ω0 ̸= ∅, we set ᾱ = ∞. Then we see
that (3.10) is equivalent to

0 ≤ α < ᾱ (3.12)

and that, if α satisfies (3.12), then (3.7) has a unique positive solution θ(x;αp).

Lemma 3.2. The mapping α → θ(x;αp) is of class C1 from [0, ᾱ) to C(Ω) and strictly
decreasing. Moreover, it satisfies the following properties:
(i) lim

α→0
θ(·;αp) = θ0 uniformly in Ω, where θ0 is a unique positive solution of

d∆θ + θ(a− bθ) = 0 in Ω and θ = 0 on ∂Ω.

(ii) lim
α→ᾱ

θ(·;αp) =

{
0 uniformly in Ω if ᾱ < ∞,

θ∞ uniformly in Ω if ᾱ = ∞.

Here θ∞ is a function satisfying θ∞ ≡ 0 in Ω \ Ω0 and
d∆θ∞ + θ∞(a− bθ∞) = 0 in Ω0,

θ∞ = 0 on ∂Ω0,

θ∞ > 0 in Ω0.
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Before giving the proof of Lemma 3.2 we will prove the solvability of (3.2).

Theorem 3.2. Let a > dλ1,Ω. Then (3.2) has a unique positive solution u∗.

Remark 3.1. It is easy to show that (3.2) has no positive solution for a ≤ dλ1,Ω.

Proof. Since θ(x;αp) is a positive solution of (3.7) for 0 ≤ α < ᾱ, we see, in view of (3.3),
that θ(x;αp) is a positive solution of (3.2) if and only if α satisfies (3.8). Denote the right-hand
side of (3.8) by F (α). It follows from Lemma 3.2 that F (α) is strictly decreasing for α ∈ [0, ᾱ]
and satisfies

F (0) =

∫
Ω

q(x)θ0(x)dx > 0

and F (ᾱ) = 0 in case ᾱ < ∞,

lim
α→∞

F (α) =

∫
Ω0

q(x)θ∞(x)dx in case ᾱ = ∞.

Therefore, it is easy to find a unique α∗ satisfying α∗ = F (α∗) in both cases ᾱ < ∞ and ᾱ = ∞.
Clearly, θ(x;α∗p) becomes a unique positive solution of (3.2).

Proof of Lemma 3.2. Observe that θ(x;αp) satisfies

−d∆θ(x;αp) + αp(x)θ(x;αp) + θ(x;αp)(bθ(x;αp)− a) = 0 in Ω

with θ(x;αp) = 0 on ∂Ω. Differentiation of the above equation with respect to α leads us to

−d∆w + αp(x)w + (2bθ(x;αp)− a)w = −p(x)θ(x;αp) in Ω and w = 0 on ∂Ω

with w(x) = (∂/∂α)θ(x;αp). We should recall that −d∆+αp(x)+2bθ(x;αp)−a is an invertible
and order-preserving operator from W 2,p(Ω) ∩W 1,p

0 (Ω) to Lp(Ω) (see, e.g., [15, Lemma 1.1]).
Therefore, the implicit function theorem assures to show

∂θ(αp)

∂α
= −{−d∆+ αp(x) + 2θ(x;αp)− a}−1(pθ(αp)) < 0 in Ω.

Thus α → θ(x;αp) is strictly decreasing.
It is easy to see θ(0) = θ0 and θ(ᾱp) = 0 in case ᾱ < ∞.
It remains to study limα→∞ θ(αp) in case ᾱ = ∞. Since θ(αp) is positive and strictly

decreasing with respect to α, there exists a nonnegative function θ∞ such that

lim
α→∞

θ(αp) = θ∞ pointwise in Ω. (3.13)

Take any φ ∈ C∞
0 (Ω); then it holds that

−d

∫
Ω

θ(x;αp)∆φdx+ α

∫
Ω

p(x)θ(x;αp)φdx =

∫
Ω

θ(x;αp)(a− bθ(x;αp))dx. (3.14)

Since p(x) = 0 in Ω0, we see from (3.14) that∫
Ω\Ω0

p(x)θ(x;αp)φdx =
1

α

{
d

∫
Ω

θ(x;αp)∆φdx+

∫
Ω

θ(x;αp)(a− bθ(x;αp))dx

}
. (3.15)

Making use of the uniform boundedness of θ(x;αp) for α ≥ 0 and letting α → ∞ in (3.15) one
can derive ∫

Ω\Ω0

p(x)θ∞(x)φdx = 0 for any φ ∈ C∞
0 (Ω).
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Therefore, θ∞(x) = 0 for x ∈ Ω \ Ω0.
We next take any φ ∈ C∞

0 (Ω0) and define φ̃ ∈ C∞
0 (Ω) by φ̃(x) = φ(x) if x ∈ Ω0 and

φ̃(x) = 0 if x ∈ Ω \ Ω0. Setting φ = φ̃ in (3.14) leads to

−d

∫
Ω0

θ(x;αp)∆φdx =

∫
Ω0

θ(x;αp)(a− bθ(x;αp)φdx.

Letting α → ∞ in the above identity we get

−d

∫
Ω0

θ∞∆φdx =

∫
Ω0

θ∞(a− bθ∞)φdx;

which implies {
−d∆θ∞ = θ∞(a− bθ∞) in Ω,

θ∞ = 0 on ∂Ω.

It should be noted by elliptic regularity theory that θ∞ becomes continuous in Ω. Therefore,
one can conclude from Dini’s theorem that the convergence in (3.13) is uniform. Thus the proof
is complete.

4 Concluding remarks

4.1 Stability of stationary solution

In the previous section, we have shown in Theorem 3.2 that (3.2) has a unique positive solution
u∗. Then it is a very important problem to study the stability of u∗. The spectral problem for
the linearized operator around u = u∗ is given by−d∆v + a1(x)v + p(x)u∗(x)

∫
Ω

q(y)v(y)dy = σv in Ω,

v = 0 on ∂Ω,
(4.1)

where

a1(x) = 2bu∗(x)− a+ p(x)

∫
Ω

q(y)u∗(y)dy.

The above linearized operator is not self-adjoint; so that the spectral problem may have complex
eigenvalues. Moreover, we do not know if the Krein-Rutman theorem holds for (4.1) or not. So
it is difficult to get satisfactory information on the spectrum for (4.1). (Note that Theorem 2.1
in [2] is not applicable to (4.1). )

In general, it is a delicate and difficult problem to study the eigenvalues for the operator
with nonlocal terms, see, e.g., [4], [5, 6, 7].

Finally, it should be noted that, if a is regarded as a bifurcation parameter in (3.2), then the
local bifurcation theory assures the existence and uniqueness of bifurcating positive solutions
of (3.2) if a (> dλ1,Ω) is very close to dλ1,Ω. We can also show that such bifurcating positive
solutions are asymptotically stable when a is very close to dλ1,Ω. So we have a conjecture that
u∗ is asymptotically stable for every a > dλ1,Ω.

4.2 Positive solutions for general case

Our method of analysis is applicable for more general class of equations with diffusion and
nonlocal effects:

ut = d∆u+ u(f(u)− p(x)

∫
Ω

q(y)g(u(y, t))dy),
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where f(u) is a deceasing and locally Lipschitz continuous function such that f(0) > 0 and g(v)
is an increasing, positive and locally Lipschitz continuous function for v > 0.

In Section 3, we have discussed the stationary problem in a case when k has a special form
(3.1). Taking account of nonlocal effects it is also important to study the stationary problem
in case k has the following form

k(x, y) = ρ(x− y),

where ρ is nonnegative and continuous function. For this problem, we can also apply the
bifurcation theory by regarding a as a bifurcation parameter. So it is also possible to show
that, for each a > dλ1,Ωd∆u+ u

(
a− bu−

∫
Ω

ρ(x− y)u(y)dy

)
= 0 in Ω,

u = 0 on ∂Ω,

has at least one positive solution. We will discuss this fact elsewhere.
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