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1 Introduction

I would like to give a lecture about evolution equations and their applications to partial dif-
ferential equations (PDEs). In this lecture, evolution equations are understood as abstract
differential equations of the form

(E) ut +Au = 0

in an infinite dimensional space X (usually, X will be a Banach space). Here A is a linear or
nonlinear operator whose fundamental properties are usually determined by reflecting partial
differential operators. Although the treatment of (E) is frequently carried out with the aid of
functional analysis, it is desirable that abstract results for (E) inherit some of basic properties
of original PDEs.

The theory of evolution equations has developed to study the dynamics of solutions for (E).
The main purpose of this lecture is to explain (as far as I know) how the theory of evolution
equations has been applied to nonlinear PDEs, what kind of contributions it has given in the
related fields and what kind of limits it has for the better understanding of nonlinear PDEs.
Topics are selected according to my interest; so that some important ones may not be discussed
here. There are a lot of good monographs which deal with evolution equations and their
applications to PDEs; say, Friedman [?], Henry [?], Pazy [?], Reed and Simon [?], and Tanabe
[?]. As is seen from these monographs, the theory of abstract evolution equations is mostly
applied to parabolic equations, while, until now (1990), there are not so many works where its
applications to hyperbolic or Schrödinger equations are investigated. This is because, in the
analysis of hyperbolic or Schrödinger equations, it is very difficult for the abstract theory to
yield important information (as PDEs) other than the existence and uniqueness of solutions.
Therefore, my lecture is also principally concentrated to parabolic equations.

2 Prototypes of evolution equations

As prototypes for linear evolution equations, I will give three classes of linear PDEs; diffusion
equations, wave equations and Schrödinger equations.

Let Ω ⊂ RN (N ∈ N) be a bounded domain with smooth boundary ∂Ω. Set X = L2(Ω).

(I) Consider the following initial boundary value problem for diffusion equations{
ut = ∆u in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞).
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If we define a positive self-adjoint operator A in X by

Au = −∆u with domain D(A) = H2(Ω) ∩H1
0 (Ω),

then the above problem is written as (E).

(II) We next consider the initial boundary value problem for wave equations{
utt = ∆u in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞).

Define A as in (I). Since A is a positive self-adjoint operator in X, there exists a spectral
decomposition {E(λ)}λ>0 associated with A. Therefore,

A1/2 =

∫ ∞

0

λ1/2dE(λ).

Introduce a new unknown function U = t(v, w) by v = ut and w = A1/2u; then the above
wave equation is represented as Ut+BU = 0, where B is an anti-self-adjoint operator in X×X
defined by

B =

(
0 A1/2

−A1/2 0

)
.

(III) Finally consider the following problem for Schrödinger equations{
iut = ∆u in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞).

With use of A defined in (I), set C = −iA. Then this problem is written as in the form of (E)
with A replaced by C. It should be noted here that there are no differences between (II) and
(III) from the view point of operator theory because C is also an anti-self-adjoint operator.

3 Abstract setting of semilinear parabolic equations

Typical semilinear parabolic equations are expressed as

ut = ∆u+ F (u,∇u).

Such equations are regarded as abstract semilinear evolution equations of the form

ut +Au = F (u), t > 0, (3.1)

in an appropriate function space X. In (??), A is a linear operator and F is a nonlinear
operator.

Before studying (??), it is convenient to give some preliminary results on the Cauchy problem
in a Banach space X with norm ∥ · ∥:

ut +Au = 0, t > 0, with u(0) = a, (3.2)

where A is a closed linear operator with dense domain D(A). Usually,it is assumed that A
satisfies the following resolvent condition:

∥(λ+A)−1∥ ≤ C

(1 + |λ|)β
with 0 ≤ β ≤ 1 (3.3)
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for every λ ∈ Σω := {λ ∈ C; |λ| ≥ c0, | arg λ| ≤ π − ω with c0 > 0 and ω ∈ (0, π/2)}.
We will take the Laplace transform for (??): the Laplace transform û(λ) of u(t) is defined

by

û(λ) =

∫ ∞

0

e−λtu(t)dt.

Then it follows that −a+λû(λ)+Aû(λ) = 0; so that û(λ) = (λ+A)−1a. Therefore, the inverse
Laplace transform of û(λ) formally leads to

u(t) =
1

2πi

∫ c+iω

c−iω

eλt(λ+A)−1a dλ

with some c ∈ R. By Cauchy’s integral theorem, this formal calculation is justified when u(t)
is defined by

u(t) =
1

2πi

∫
Γ

eλt(λ+A)−1a dλ := e−tAa, (3.4)

where the integral is understood as Dunford integral and Γ is a contour in Σω with arg λ→ ±θ
as |λ| → ∞ for some θ ∈ (π/2, π − ω].

We will indicate several examples associated with 2m-th order elliptic differential operator
A(x,D) in Ω, which is supplemented by an appropriate class of normal boundary conditions
(for details, see, e.g., Tanabe [?]).

Cace (A). SetX = Lp(Ω) with p > 1 and define (Au)(x) = A(x,D)u(x) for u ∈ D(A) = {v ∈
W 2m,p(Ω); v satisfies suitable boundary conditions}. Then it is well known that A becomes a
closed linear operator satisfying (??) with β = 1 (see Tanabe [?]). Moreover, it can be shown
that {e−tA} is an analytic semigroup.

Case (B). Set X = C(Ω) and define A as in Case (A) with

D(A) = {v ∈
⋂
q>N

Wm,q(Ω); A(x,D)v ∈ C(Ω)and v satisfies boundary conditions}.

By Stewart [?] it is shown that A satisfies (??) with β = 1 and that {e−tA} becomes an infinitely
differentiable semigroup although D(A) is not dense in X.

Case (C). Set X = Ck(Ω) ad define A as in Case (A) with domain

D(A) = {v ∈ C2m+k(Ω); v satisfies boundary conditions}.

It follows from the results of Von Wahl [?] that (??) holds true with β = 1 − k/(2m). In this
case, {e−tA} also becomes an infinitely differentiable semigroup.

Further information can be found in the works of Yagi [?, ?, ?].

4 Local existence theory of semilinear evolution equations

As one of important contributions of abstract theory to nonlinear PDEs, we will discuss the
local existence theory for (??). Suppose that A is a densely defined closed linear operator
in a Banach space X, which satisfies resolvent condition (??) with β = 1. Moreover, let the
spectrum σ(A) of A satisfy Re σ(A) > 0 for the sake of simplicity.

The essential idea to construct a local solution to (??) is almost the same as for ordinary
differential equations (ODEs). The first step is to rewrite (??) as an integral equation of the
form

u(t) = e−tAa+

∫ t

0

e−(t−s)AF (u(s))ds. (4.1)
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If u → F (u) is locally Lipschitz continuous in X, it is quite easy to construct a local solution
of (??) by an iteration procedure or a fixed point theorem for strictly contraction mapping.
However, the local Lipschitz continuity of F (u) is too severe to apply this local existence result
to semilinear diffusion equations.

Fractional powers of A play a crucial role in the application of the abstract theory to a very
wide class of semilinear parabolic equations. For every α > 0, define

A−α =
1

2πi

∫
Γ

(−λ)−α(λ+A)−1dλ

and Aα is defined by the inverse of A−α. In applications, D(Aα) is important rather than Aα.
Its complete characterization is established by Triebel [?].

Suppose that A : Lp(Ω) → Lp(Ω), p > 1, is a realization of 2m-order elliptic differential op-
erator with a suitable normal boundary condition. It is well known that the following inclusion
relations hold: D(Aα) ⊂W k,q(Ω) if k − N

q ≤ 2mα− N
p , q > p,

D(Aα) ⊂ Cµ(Ω) if 0 ≤ µ < 2mα− N
p ,

(4.2)

(see, e.g., Henry [?] or Triebel [?]). Here we note that each inclusion mapping in (??) is
continuous. The continuity of nonlinear operator F (u) can be described in terms of fractional
powers of A; say,

∥F (u)− F (v)| ≤ L(∥Aαu∥, ∥Aαv∥)∥Aα(u− v)∥ for all u, v ∈ D(Aα)

with some α ∈ (0, 1), where L(U, V ) is a continuous function of U and V . Since the analytic
semigroup {e−tA} satisfies

∥Aαe−tAu∥ ≤ Cαt
−α∥u∥ for all u ∈ X and t > 0 (4.3)

with a positive constant Cα, an iteration procedure will lead us to a local existence reslut for
(??). The first analytic semigroup approach which has produced interesting contributions to
semilinear parabolic equations will originate in a pioneer work of Fujita and Kato [?, ?]. In
their works, the Navier-Stokes equations were studied in the framework of L2 theory with use
of fractional powers of the Stokes operator. See also Giga and Miyakawa [?] or Hishida [?],
where the semigroup approach is carried out in Lp framework.

In what follows, we assume that F satisfies F (0) = 0 and

∥F (u)− F (v)∥ ≤ C(∥Aγu∥+ ∥Aγv∥)m−1∥Aγ(u− v)∥ for all u, v ∈ D(Aγ) (4.4)

with C > 0,m > 1 and 0 ≤ γ < 1. Then the following existence result holds true for (??). The
proof can be found in the work of Hoshino and Yamada [?].

Theorem 4.1. Let m, γ and θ satisfy
mγ − 1

m− 1
≤ θ < 1 if mγ > 1,

0 < θ < 1 if mγ = 1,

0 ≤ θ if mγ < 1.

(4.5)

Then for every a ∈ D(Aθ) there exists a positive number T such that (??) has a unique solution
u ∈ C([0, T ]; D(Aθ)) with the following properties:

(i) t(γ−θ)+u ∈ C((0, T ]; D(Aγ) and t(γ−θ)+∥Aγu(t)∥ ≤ Mγ∥Aθa∥ fot 0 ≤ t ≤ T with some
Mγ > 0.

(ii) ∥Aγu(t)∥ = o(t−(γ−θ)) as t→ 0 if γ > θ.
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Theorem ?? assures the solvability of integral equation (??). Further regularity properties
can be obtained in the following theorem (see [?]).

Theorem 4.2. Let u be the solution in Theorem ??. Then the following properties hold true:
(i) For every α ∈ [0, 1], t(α−θ)+u ∈ C((0, T ];D(Aα) and t(α−θ)+∥Aαu(t)∥ ≤ Mα∥Aθa∥ for

0 < t ≤ T with a positive number Mα.
(ii) For every α ∈ [0, 1), t1+(α−θ)+ut ∈ C((0, T ];D(Aα) and t1+(α−θ)+∥Aαut(t)∥ ≤M∗

α∥Aθa∥
for 0 < t ≤ T with a positive number M∗

α.
(iii) u satisfies (??).

As an application of Theorems ?? and ??, we consider the following initial boundary value
problem in a bounded domain Ω ⊂ RN with smooth boundary ∂Ω:

ut = ∆u+ |u|m−1u in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(x, 0) = a(x) in Ω,

(4.6)

where m > 1 and a is a measurable function defined in Ω. Set X = Lp(Ω) with p > 1 and
define Apu = −∆u with D(Ap) = {u ∈W 2,p(Ω); u = 0 on ∂Ω}. Since Ap satisfies (??) (with
m = 1), it is easy to see that, if

p > max{1, (m− 1)N/2m},

then F (u) = satisfies (??) with γ = (m − 1)N/2mp. Simple applications of Theorems ?? and
?? assure that, for every a ∈ D(Aθ) with

θ ≥ 0 if p > (m−1)N
2 ,

θ > 0 if p = (m−1)N
2 ,

θ ≥ N
2p − 1

m−1 if (m−1)N
2 > p,

(4.7)

then (??) has a unique local solution u in the framework of Lp(Ω) space.
It is also possible to derive from Theorems ?? and ?? much more information; say, asymp-

totic behavior or singular behavior of u(t) as → 0 in various function spaces.
Take any τ ∈ (0, T ]. Since u(τ) ∈ D(Aα

p ) for every α ∈ [0, 1], we can regard u(τ) ∈ D(Aθ′

p′)
with p′ > p and θ′ < θ. If we choose p′, θ′ snf γ′ := (m− 1)/2p′m such that they satisfy (??),
then u(t) for τ ≤ t ≤ T may be regarded as a solution in Lp′

(Ω). Then the uniqueness and

regularity results yield u(t) ∈ D(Aβ
p′) for β ∈ [0, 1] and t ∈ [τ, T ]. Repeating this procedure and

making use of (??), we arrive at the following result on the asymptotic behavior of u in various
Sobolev spaces near t = 0.

Proposition 4.1. Assume (??). Then there exists a positive number T such that (??) has a
unique solution u jn [0, T ], which satisfies for every q ≥ p

max
|µ|≤2,|ν|≤1

∥∥∥∥∥ sup
t∈(0,T ]

tρ−θ+|µ|/2∥Dµ
xu(t)∥Lq , sup

t∈(0,T ]

tρ−θ+1+|ν|/2∥Dν
xut(t)∥Lq

}
≤ C∥Aθ

pa∥Lp

with ρ =
N

2mp
− N

2mq
, where C is apositive number independent of a.

This proposition is concerned with smoothing effect of parabolic equations. As its corollary,
making use of Sobolev’s imbedding theorem, we can show that u(x, t), Dxu(x, t) and ut(x, t)
are Hölder continuous with respect to x ∈ Ω for each t ∈ (0, T ]. These facts imply that, even if
initial function a is not smooth, (??) has a classical solution. Details can be found in the work
of Hoshino and Yamada [?]. See also the related work of Weissler, where the solvability of (??)
is also studied in terms of the corresponding integral equation.
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5 global existence theory for semilinear parabolic equa-
tions

A. Abstract global existence

Consider the Cauchy problem for abstract evolution equations of the form (??) when F
satisfies (??). We assume that A satisfies, in place of (??),

∥Aαe−tAu|| ≤ C(α)t−αe−ω0t∥u∥ for all u ∈ X and t > 0 (5.1)

with some C(α) > 0 and ω0 > 0. The global existence theorem reads as follows.

Theorem 5.1. Let m, γ and θ satisfy (??). Then there exists a positive constant δ0 such that,
for every a ∈ D(Aθ) with ∥Aθa∥ ≤ δ0, (??) admits a unique global solution u such that u(t)
decays exponentially to zero as t→ ∞ (in a suitable topology).

For the proof, see Hoshino and Yamada [?]. It is easy to apply Theorem ?? to initial
boundary value problem (??) to derive the global existence of solutions. See Weissler [?], where
Lp − Lq estimates for {e−tA} are used in place (??). See also Lions [?].

B. Use of a priori estimates

A priori estimates are often combined with the local existence theorem in order to assure the
global existence of solutions for (??). Their derivation has, in a sense, a very technical feature.
According to special forms of nonlinear terms, one can use, for instance, the comparison prin-
ciple for parabolic equations, Moser’s technique (see, e.g., Alikakos [?]) or feedback arguments
based on Lp − Lq estimates for {e−tA} (see, e.g., Rothe [?, ?]).

We will give a simple example:
ut = ∆u+ cu(1− u2) in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(x, 0) = a(x) in Ω,

(5.2)

where c is a positive constant. Take p > max{1, N}. Theorems ?? and ?? imply the existence
of a local solution u to (??) for any a ∈ Lp(Ω). Therefore, it is sufficient to get an a priori
estimate of ∥u(t)∥Lp with some p > max{1, N} to extend u(t) globally over [0,∞). For the
sake of simplicity, assume a ∈ L∞(Ω). As a comparison function, we take the solution of the
following ODE

vt = cv(1− v2), v(0) = ∥a∥L∞ .

Then it is easy to derive the following estimate by the comparison theorem

∥u(t)∥L∞ ≤ v(t) ≤ max{1, ∥a|∥L∞},

which assures the global existence of the solution to (??).

6 Stability of steady-state solutions

After the existence of global solutions to (??) is established, it becomes important to study their
asymptotic behaviors as t→ ∞. In this connection, the stability or instability of steady-states
is very closely related with the asymptotic analysis.
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Let u∗ be a steady state solution for (??); that is, u∗ satisfies

Au∗ − F (u∗) = 0. (6.1)

The stability of u∗ is decided by the asymptotic behaviors of solutions of (??) when initial data
are near u∗ with respect to the topology of a suitable Banach space Y (sometimes stronger than
X). Let u(t; a) be the solution of (??) with u(0) = a. We say that u∗ is stable in Y if, for any
neighborhood U of u∗ in Y , there exists a neighborhood V of u∗ in Y such that u(t; a) ∈ U for
all t ≥ 0 whenever a ∈ V . If this property does not hold, it is said that u∗ is unstable (in Y ).
Moreover, a stable steady state u∗ is called an asymptotically stable-state if u(t; a) → u∗ in Y
as t→ ∞ for every a ∈ V .

Set v = u− u∗; then (??) is rewritten as

vt +Av − dF (u∗)v = G(v), (6.2)

where dF (u∗) denotes the Fréchet derivative of F at u∗ and G(u) is, roughly speaking, a
higher-order term. The linearized principle is based on the idea that the asymptotic behaviors
of solutions of (??) will be quite similar to those of solutions to

wt +Bw = 0 with B := A− dF (u∗),

when the former solutions remain near zero. The (linearized) stability or instability of u∗ can
be stated as follows; for details, see the monograph of Henry [?].

Theorem 6.1. Let B satisfy (??) with β = 1 and let G satisfy ∥G(v)∥Y = o(∥v∥Y ) with respect
to suitable Banach space Y .

(i) If σ(B) lies in the set {λ ∈ C; Re λ ≥ c} with some c > 0, then u∗ is asymptotically
stable in Y .

(ii) If σ(B)
⋂
{λ ∈ C; Reλ < 0} is nonempty, then u∗ is unstable in Y .

The stability theorem has a lot of modifications; see for instance the works of Kielhöfer
[?, ?], where semilinear parabolic equations are discussed. Theorem ?? is also applicable to the
stability analysis of steady-states.

We will apply Theorem ?? to the stationary problem for (??). Clearly, u = 0 is a steady-
state solution. The linearized operator for (??) at 0 os given by

B = −∆− c with zero Dirichlet boundary condition.

Denote by λ1 the least eigenvalue of −∆ with zero Dirichlet boundary condition. Theorem ??
assures the asymptotic stability of u = 0 in case c < λ1. More precisely, we can show that, if
∥a∥p is sufficiently small for p > max{1, N} and c < λ1, then the solution u of (??) satisfies

lim
t→∞

∥u(t)∥q = 0 expenentially for every q ≥ p.

For c > λ1,u = 0 loses its stability. Are there any stable steady-states for (??) in case
c > λ1? It can be shown by the comparison method that, for every c > λ1, the stationary
problem associated with (??) has a unique positive (resp. negative) solution ϕ (resp.−ϕ) (see,
e.g., Sattinger [?]). We will study the stability of ϕ. The linearized operator at ϕ is

B = −∆− c+ 3cϕ2 with zero Dirichlet boundary condition.

Since B is self-adjoint in L2(Ω), all eigenvalues of B are real. Let µ1 be the least eigenvalue
of B and denote by ψ the corresponding eigenfunction. Since ψ does not change the sign, ψ is
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allowed to be positive. Multiply Bψ = µ1ψ by ϕ and integrate the resulting expression over Ω;
then

µ1

∫
Ω

ϕψ dx = −
∫
Ω

ϕ∆ψ dx+

∫
Ω

ϕ(−c+ 3cϕ2)ψ dx

= −
∫
Ω

∆ϕ ψ dx+

∫
Ω

(−c+ 3cϕ2)ϕψ dx

= 2c

∫
Ω

ϕ3ψ dx > 0.

Since µ1 is positive from the above relations, σ(B) lies in the right half plane. Thus the
asymptotic stability of the positive solution ϕ follows from Theorem ??. The stability of −ϕ
can be shown in the same way.

As above, we have discussed the local stability properties of 0 and ±ϕ. Moreover, we can
derive their “global” stability property. Define the following functional

E(u) =
1

2

∫
Ω

|∇u(x)|2 dx− c

2

∫
Ω

u2(x)dx+
c

4

∫
Ω

u4(x)dx.

Let u(t; a) be the solution of (??). Then

d

dt
E(u(t; a)) =

∫
Ω

∇u(t; a) · ∇ut(t; a)dx− c

∫
Ω

ut(t; a)(u(t; a)− u3(t; a))dx

= −
∫
Ω

ut(t; a){∆u(t; a) + cu(t; a)(1− u2(t; a))}dx

= −
∫
Ω

ut(t; a)
2 dx ≤ 0,

which means that E(u(t; a)) is decreasing with respect to t. This fact, together with the theory
of dynamical systems (see, for instance, [?]), allows us to conclude that

lim
t→∞

u(t; a) = u∗ uniformly in Ω (6.3)

and
lim
t→∞

E(u(t; a)) = E(u∗), (6.4)

where u∗ is a steady-state for (??), that is, u∗ satisfies

∆v + cv(1− v2) = 0 in Ω, v = 0 on ∂Ω. (6.5)

If c ≤ λ1, one can show that u∗ ≡ 0 is the only solution of (??); so that it follows from (??) that
all solutions of (??) converge to 0 uniformly in Ω. In this sense, u∗ ≡ 0 is a global attractor for
(??) and, furthermore, it is a global minimizer of E(u).

In case c > λ1, take nonnegative a( ̸≡ 0). The strong maximum principle yields u(t; a) > 0
in Ω for t > 0 (see [?]). Let φ1 be a positive eigenfunction of −∆ corresponding to λ1. For
fixed t0 > 0, ake a sufficiently small ε > 0 satisfying u(t0; a) > εφ1 in Ω. Then the comparison
theorem for parabolic equations assures

max{1, ∥a∥L∞} ≥ u(t; a) ≥ u(t− t0; εφ1) ≥ εφ1 in Ω and for t ≥ t0. (6.6)

Here it should be noted that

E(εφ1) =
1

2
(λ1 − c)ε2

∫
Ω

φ2
1 dx+

c

4
ε4

∫
Ω

φ4
1dx

=
ε2

4

{
cε2

∫
Ω

φ4
1dx− 2(c− λ1)

∫
Ω

φ2
1dx

}
< 0
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provided that ε > 0 is sufficiently small. Therefore, it follows from (??) and (??) that

lim
t→∞

u(t; εφ1) = φ∗ uniformly in Ω and lim
t→∞

E(u(t; εφ1)) = E(φ∗) < E(εφ1) < 0,

where φ∗ is a nonnegative and nontrivial solution of (??). Hence the maximum principle for
elliptic equations enables us to see that φ∗ is positive in Ω (the positivity of φ∗ also follows
from (??) by letting t → ∞). Here we use the fact that a positive solution of (??) is unique;
so that φ∗ = ϕ. This fact together with (??) and (??) implies that, if a ≥ 0 and a ̸≡ 0, then
u(t; a) satisfies

lim
t→∞

u(t; a) = ϕ uniformly in Ω.

Thus one can derive the global attractivity of ϕ in case a ≥ 0 ( ̸≡ 0). It is also possible to show
that ϕ is a global minimizer of E in case c > λ1.

For further information, see the monographs of Hale [?] or Henry [?], where the one dimen-
sional case is studied in detail as the Chafee-Infante problem.

Remark 6.1. Generally, some special tools are required to look for solutions of (??); say,
fixed point theorems, implicit function theorem, comparison method, variational method, degree
theory, etc. When one relies on an operator theoretical approach, there is a very useful tool
based on the bifurcation theory. This theory has been developed by Crandall and Rabinowitz
(see [?, ?] and the references therein) and the procedure to determine the stability of bifurcating
solutions as well as their construction has been established. Therefore, this theory has been
successfully applied to nonlinear PDEs in various fields.

7 Analysis of semilinear parabolic systems

Following the lines stated in Sections 5 and 6, we can also study semilinear parabolic systems
although the construction of steady-states becomes more complicate. As a typical example, we
consider the following prey-predator system with diffusion

ut = ∆u+ au(1− u− cv) in Ω× (0,∞),

vt = ∆v + bv(1 + du− v) in Ω× (0,∞),

u = v = 0 on ∂Ω× (0,∞),

u(·, 0) = u0, v(·, 0) = v0 in Ω,

(7.1)

where a, b, c.d are positive constants and u0, v0 are nonnegative measurable functions defined
in Ω. In (??) u denotes the population density of a prey species and v denotes the population
density of a predator species. This system has been investigated by lots of authors as a model
to describe the population dynamics between two species.

Take X = Lp(Ω) × Lp(Ω) with p > max{1, N/2} and define norm ∥ · ∥ of X by ∥U∥ =
∥u∥Lp+∥v∥Lp for U =t(u, v) ∈ X. We define a closed linear operator A from domain D(A) ⊂ X
to X by

AU =

(
−∆− a 0

0 −∆− b

)(
u
v

)
for U =

(
u
v

)
∈ D(A) = {W 2,p(Ω) ∩W 1,p

0 (Ω)}2.

Then one can show that A satisfies the resolvent condition (??) with β = 1; so that it generates
an analytic semigroup {e−tA}. We rewrite (??) in the form of (??) with

F (U) =

(
−au(u+ cv)
bv(du− v)

)
for U =

(
u
v

)
∈ X.
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Since F (U) satisfies the Lipschitz condition (??) with m = 2 and γ = N/4p, it is possible to
apply Theorems ?? and ?? to (??). For any nonnegative (u0, v0) ∈ X, there exists a unique
(local) solution U = (u, v) ∈ C([0, T ]; X) ∩ C1((0, T ]; X) ∩ C((0, T ]; W 2,p(Ω) × W 2,p(Ω))
of (??) with some T > 0. Moreover, by the maximum principle for parabolic equations, the
nonnegativity of (u0, v0) assures the u(·, t) ≥ 0 and v(·, t) ≥ 0 as long as the solution exists.

In what follows, assuming (u0, v0) ∈ {L∞(Ω)}2 for the sake of simplicity, we will derive an a
priori estimate for U(t) = (u(t), v(t)), which allow us to extend the local solution U(t) in[0, T ]
to the whole interval [0,∞). Since u and v are nonnegative, u satisfies

ut = ∆u+ au(1− u− cv) ≤ ∆u+ au(1− u),

the comparison theorem yields the following estimate

0 ≤ u(x, t) ≤ max{1, ∥u0∥L∞} =: m1 for (x, t) ∈ Ω× (0,∞). (7.2)

Hence v satisfies
vt = ∆v + bv(1 + du− v) ≤ ∆v + bv(1 + dm1 − v).

Applying the comparison theorem again we get

0 ≤ v(x, t) ≤ max{1 + dm1, ∥v0∥L∞} =: m2 for (x, t) ∈ Ω× (0,∞). (7.3)

Owing to (??) and (??) it is easy to see that (??) has a bounded global solution U = (u, v) ∈
C([0,∞); X) ∩ C1((0,∞); X).

Our nest task is to study asymptotic behaviors of solutions to (??) as t → ∞. As a
preparatory problem, we will consider the following logistic diffusion equation:

wt = ∆w + aw(1− w) in Ω× (0,∞),

w = 0 on ∂Ω× (0,∞),

w(·, 0) = w0 ≥ 0( ̸≡ 0) in Ω,

(7.4)

where a is a positive constant and w0 is L∞(Ω) function. The steady-state problem associated
with (??) is given by

∆w + aw(1− w) = 0 in Ω and w = 0 on ∂Ω. (7.5)

We will look for a nonnegative solution of (??). It ia well known that (??) has no nontrivial
solutions in case a ≤ λ1, while it has a unique positive solution θa in case a > λ1. Moreover it
is also known that for any w0 ≥ 0( ̸≡ 0), every solution of (??) satisfies

lim
t→∞

w(t) = θa uniformly in Ω.

After these preparations, we will study the steady-state problem associated with the prey-
predator model with diffusion:

∆u+ au(1− u− cv) = 0, u ≥ 0, in Ω,

∆v + bv(1 + du− v) = 0, v ≥ 0, in Ω,

u = v = 0 on ∂Ω

(7.6)

In addition to the trivial solution (u, v) = (0, 0), the steady-state problem (??) possesses the
following two semitrivial solutions

(u, v) = (θa, 0) if a > λ1,

(u, v) = (0, θb) if b > λ1.

The stability of these solutions can be obtained by the linearization principle (Theorem ??).
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Theorem 7.1. (i) Thr trivial solution (u, v) = (0, 0) is asymptotically stable if a < λ1 and
b < λ1, while it is unstable if a > λ1 or b > λ1.
(ii) (u, v) = (θa, 0) is asymptotically stable if Infφ∈H1

0 (Ω){∥∇φ∥2 − b
∫
Ω
(1 + dθa)φ

2dx} > 0,

while it is unstable if Infφ∈H1
0 (Ω){∥∇φ∥2 − b

∫
Ω
(1 + dθa)φ

2dx} < 0.

(iii) (u, v) = (0, θb) is asymptotically stable if Infφ∈H1
0 (Ω){∥∇φ∥2 − a

∫
Ω
(1 − cθb)φ

2dx} > 0,

while it is unstable if Infφ∈H1
0 (Ω){∥∇φ∥2 − a

∫
Ω
(1− cθb)φ

2dx} < 0.

Remark 7.1. We can also study the global asymptotic stability of the trivial and semitrivial
solutions in Theorem ??. For instance, take (θa, 0). Applying comparison theorems to reaction
diffusion equations for u and v separately, one can prove the global asymptotic stability of (θa, 0)
provided that (a, b) satisfies Infφ∈H1

0 (Ω){∥∇φ∥2 − b
∫
Ω
(1 + dθa)φ

2dx} > 0. That is, under this
condition, every solution (u, v) of (??) satisfies

lim
t→∞

(u(t), v(t)) = (θa, 0) niformly in Ω.

Similarly, it is also possible to prove the global asymptotic stability of (0, θb) when (a.b) satisfies
Infφ∈H1

0 (Ω){∥∇φ∥2 − a
∫
Ω
(1− cθb)φ

2dx} > 0.

Theorem ?? implies that the trivial and semitrivial solutions are unstable when (a, b) satisfies

Infφ∈H1
0(Ω){∥∇φ∥2 − b

∫
Ω

(1 + dθa)φ
2dx} < 0 and

Infφ∈H1
0 (Ω){∥∇φ∥2 − a

∫
Ω

(1− cθb)φ
2dx} < 0.

(7.7)

The most significant and interesting task is to answer the following questions:
• What will happen for solutions of (??) if (a, b) satisfies (??)?
• Does the steady-state problem (??) possess a positive solution if (a, b) satisfies (??)?

In particular, a positive solution corresponds to the coexistence of two species; so that it is
a very important solution from an ecological point of view as well as a mathematical point. As
to the existence of a positive solution of (??) we have the following result (see Yamada [?]).

Theorem 7.2. Steady-state problem (??) has a positive solution if and only if (a, b) satisfies
(??).

We can prove this theorem with use of local and global bifurcation theory (see Crandall and
Rabinowitz [?, ?]) or degree theory (see Dancer [?]).

8 Periodic solutions and orbital stability

A. Hopf bifurcation for PDEs
Consider the following reaction-diffusion system:

ut = ∆u+ au+ bv + f(u, v) in Ω× (0,∞),

vt = ∆v − cu+ g(u, v) in Ω× (0,∞),

u = v = 0 on ∂Ω× (0,∞),

(8.1)

where a, b and c are positive constants and f(u, v), g(u, v) are higher-order nonlinear functions.
We assume bc > λ1 (we denote by {λn}∞n=1 the eigenvalues of −∆ with zero Dirichlet boundary
condition). As in Sections 6 and 7, take the linearized operator A for (??) at (u, v) = (0, 0); then
its eigenvalues are given by {λn − (a ±

√
a2 − 4bc)/2}∞n=1. We will regard a as a parameter.
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For 0 < a < 2λ1, all eigenvalues of A have positive real parts; so that Theorem ?? assures
the asymptotic stability of (u, v) = (0, 0). When a becomes larger that n 2λ1, a pair of two
eigenvalues λ1 − (a ±

√
a2 − 4bc)/2 crosses the imaginary axis in the complex plane. In this

situation, bifurcation of periodic solutions (not another steady state) occurs from the trivial
state (0, 0) (see Crandall and Rabinowitz [?]).

In this section, we will explain how to study the stability of periodic solutions for (??). An
important tool is the Poincaré map associated with linear evolution equations of the form

ut + C(t)u = 0, u(0) = u0, (8.2)

where C(t) is a T−periodic linear operator. Let u(t;u0) be the solution of (??). When U(t)
is defined by U(t)u0 = u(t;u0), U(T ) is called the Poincaré map for (??). If η satisfies eηT ∈
σ(U(T )), it is called a Floquet exponent. Cleary, η is a Floquet exponent if and only if

vt + C(t)v = −ηv

has a nontrivial T -periodic solution. Therefore, if all Floquet exponents have negative real
parts, then every solution of (??) decays exponentially to zero as t→ ∞.

We now return to the case when (??) has T -periodic solution p(t). The linearization of (??)
around u = p(t) leads to

wt +Aw = dF (p(t))w. (8.3)

Here we should observe that zero is one of Floquet exponents for (??). Indeed, since p(t)
satisfies (??), w = dp/dt satisfies (??); so that zero is a Floquet exponent for (??). This fact
makes the stability analysis more involved.

A stability result for any periodic solution p(t) is stated in terms of the orbital stability for
γ := {p(t); 0 ≤ t ≤ T} in a suitable topology Y (usually stronger than X).

Theorem 8.1. Suppose that zero is a simple Floquet exponent and that real parts of other
exponents are negative. Then there exists a positive constant δ such that, if dist{a, γ} :=
Inf0≤t≤T {∥a− p(t)∥Y } ≤ δ, every solution u of (??) with u(0) = a satisfies

∥u(t)− p(t− θ)∥Y → 0 exponentially as t→ ∞

with some θ depending on a.

Making use of this theorem, Crandall and Rabinowitz have established the existence and
orbital stability of bifurcating periodic solutions in the framework of functional analysis (see
[?, ?] and the references therein).

B. Hopf bifurcation for functional differential equations
As is shown for (??), Hopf bifurcations often take place for reaction diffusion systems.

However, they also occur for scalar parabolic equations with time delays. Consider
ut = ∆u+ u(a− bu−

∫ t

−∞ k(t− s)u(s)ds) in Ω× (0,∞),
∂u

∂n
= 0 on ∂Ω× (0,∞),

u(·, τ) = ϕ(·, τ) ≥ 0 in Ω× (−∞, 0],

(8.4)

where a and b are positive constants and k is s a nonnegative continuous function with

α :=

∫ ∞

0

k(t)dt <∞.
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If k ≡ 0, the asymptotic behavior for (??) is completely known similarly as is discussed for (??)
in Section 7. The presence of k strongly influences the asymptotic behavior of (??).

We set u∗ = a/(b+α). The linearization of (??) at u∗ leads to the following “characteristic
problem” (λ−∆+ bu∗ + k̂(λ)u∗)w = 0 in Ω,

∂w

∂n
= 0 on ∂Ω,

(8.5)

where k̂(λ) is the Laplace transformation of k(t). In [?], it is provedt hat, if (??) has no
nontrivial solutions λ with Re λ ≥ 0, then u∗ is asymptotically stable in an appropriate topology.

As a special example, we take k(t) = ραe−ρt. Since

k̂(λ) =
ρα

λ+ ρ
,

(??) has no nontrivial solutions for λ with Re λ ≥ 0; so that u∗ is asymptotically stable. The
asymptotic behavior of (??) is precisely studied by Iida [?] n this seminar. See also [?].

As a next example, taking k(t) = αρ2te−ρt, we regard α as a bifurcation parameter (other
numbers are fixed). It is possible to prove that for 0 < α < α0 with some α0, (??) has
no characteristic values λ with Re λ ≥ 0; while, for α > α0, a pair of characteristic values
λ (Re λ ≥ 0) with imaginary parts appears. This fact allows us to expect Hopf bifurcations.
Indeed, Yamada and Niikura [?] have established the existence of periodic solutions by using
the bifurcation theory in such a situation.

9 Some topics

In this section I will briefly state some topics which are related to evolution equations, but are
not discussed in previous sections,

A. Inertial manifolds

When we study dynamical systems in infinite dimensional spaces, the theory of invariant
manifolds (say, stable manifolds, unstable manifolds, center manifolds etc.) has been proved to
be very important. In particular, global attractors have been studied to describe the dynamics
of dissipative evolution equations. Some authors have discussed specific problems to estimate
the Hausdorff or fractal dimensions of the corresponding global attractors in terms of physical
parameters (see, for instance, the monographs of Constantin, Foias, Nicolaenko and Temam [?]
and Temam [?]). In the course of the study, it has turned out that these global attractors are
often embedded in exponentially attractive invariant manifolds with finite dimensions, which
are called inertial manifolds. This fact allows us to believe that the asymptotic behaviors of
solutions of infinite dimensional dynamical systems are strongly governed by those of finite
dimensional dynamical systems.

Since an inertial manifold is finite dimensional and invariant, the restriction of the original
system to this manifold gives a system of ODEs. Moreover, the exponential attractivity of
the manifold assures that every solution of the original system converges to a solution of the
ODE on the manifold as t→ ∞. On account of these properties, the inertial manifold has the
possibility that enables us to go deeply in the study of asymptotic behavior of solutions for
dissipative PDEs. For details, see the works of Chow and Lu [?], Foias, Sell and Temam [?]
and Mallet-Paret and Sell [?].

B. Quasilinear evolution equations
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Many authors have studied the existence, uniqueness and some other properties of solutions
to abstract evolution equations of the form

ut +A(u)u = F (u)

in a Banach space X, where, for each u in a subset of X, A(u) is a linear operator generating
a C0-semigroup or an analytic semigroup. Among them, I would like to refer to the work
of Amann [?] and Yagi [?] as interesting results with emphasis on applications to quasilinear
parabolic equations.

C. Application of nonlinear semigroup theory

Nonlinear semigroup theory was first introduced by Kōmura [?, ?] and it has been applied
to many PDEs such as degenerate parabolic equations, parabolic variational inequalities, first-
order quasilinear equations of conservation law, etc. In particular, it seems to me that this
theory has given great contributions to the analysis of porous medium equations and related
ones (see, e.g., Benilan, Brezis and Crandall [?] ).

It is difficult to give a complete review on the nonlinear semigroup theory and its applica-
tions. So I would like to end this lecture by referring to some works of Barbu [?], Brezis [?],
Crandall [?] and Evans [?] on applications of nonlinear semigroup theory to nonlinear PDEs.
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