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1 Introduction

This is a survey article on a simplified free boundary problem which was investigated in a
series of works by Mimura, Yamada and Yotsutani [7, 8, 9]. We consider the situation that two
species, which cannot coexist in the same region, are struggling each other at the boundaries
of their territories to extend their own habitats. Assume that each species lives separately
in a one-dimensional interval [0, L]: one species lives in [0, s(t)] and the other species lives in
[s(t), L]. Here x = s(t) is a free boundary at which both species are competing. Denote by
u1(t, x) (resp. u2(t, x)) the population density of the species living in the region 0 ≤ x ≤ s(t)
(resp. s(t) ≤ x ≤ L) at time t. We assume that the dynamical behaviors of u1 and u2 are
governed by reaction-diffusion equations as follows:{

u1,t = D1u1,xx + u1f1(u1), t > 0, 0 < x < s(t),

u2,t = D2u2,xx + u2f2(u2), t > 0, s(t) < x < L,
(1.1)

where Di (i = 1, 2) are positive constants and fi (i = 1, 2) are locally Lipschitz continuous
functions satisfying fi(αi) = 0 and fi(u) < 0 for u > αi with some αi > 0 (i = 1, 2). On the
fixed boundaries x = 0, L and at initial time t = 0 we impose the following conditions

u1(t, 0) =M1, u2(t, L) =M2, t > 0,

s(0) = s0,

u1(0, x) = u10(x), 0 < x < s0,

u2(0, x) = u20(x), s0 < x < L,

(1.2)

where Mi (i = 1, 2) are nonnegative constants, 0 < s0 < L is a constant and ui0 (i = 1, 2)
are nonnegative functions. We also assume that the dynamics of the free boundary x = s(t) is
determined by the interaction between u1 and u2 in the following manner{

u1(t, s(t)) = u2(t, s(t)) = 0, t > 0,

ṡ(t) = −β1u1,x(t, s(t))− β2u2,x(t, s(t)), t ∈ {τ > 0 : 0 < s(τ) < 1},
(1.3)

where ṡ = ds/dt and βi (i = 1, 2) are positive constants. Roughly speaking, the above condition
(1.3) implies that the dynamics of the free boundary is controlled by balance of the population
pressures of two species at the competing front.
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Our purpose in the present article is to study the existence, uniqueness, regularity and
asymptotic behaviors of solutions for (1.1)-(1.3). We replace the space variable x and the free
boundary s(t) by Lx and Ls(t), respectively. Moreover, we also introduce a new unknown
function

u(t, x) =

{
u1(t, Lx)/α1 for t ≥ 0, 0 ≤ x ≤ s(t),

−u2(t, Lx)/α2 for t ≥ 0, s(t) ≤ x ≤ 1.

Then (1.1) is rewritten as

ut = d1uxx + uf(u), t > 0, 0 < x < s(t), (1.4)

ut = d2uxx + ug(u), t > 0, s(t) < x < 1, (1.5)

where di = Di/L
2 (i = 1, 2), f(u) = f1(α1u) and g(u) = f2(−α2u). The free boundary

conditions (1.3) are rewritten as

u(t, s(t)) = 0, t > 0, (1.6)

ṡ(t) = −µ1ux(t, s(t)− 0) + µ2ux(t, s(t) + 0), t ∈ {τ > 0 : 0 < s(τ) < 1}, (1.7)

where µi = αiβi/L
2 (i = 1, 2). In (1.7), ux(t, s(t) − 0) (resp. ux(t, s(t) + 0)) denotes the limit

of ux(t, x) at x = s(t) from the left (resp. right). These conditions are quite similar to the free
boundary conditions in a two-phase Stefan problem. Finally. it is easy to rewrite (1.2) as

u(t, 0) = m1, u(t, 1) = −m2, t > 0,

s(0) = ℓ,

u(0, x) = ϕ(x), 0 < x < 1,

(1.8)

where mi =Mi/αi (i = 1, 2), ℓ = s0/L and

ϕ(x) = u0,1(Lx)/α1 for x ∈ [0, ℓ] and ϕ(x) = −u0,2(Lx)/α2 for x ∈ [ℓ, 1].

So we will study the following problem for reaction-diffusion equations with Stefan-like free
boundary conditions

(P)



ut = d1uxx + uf(u) for (t, x) ∈ S−,

ut = d2uxx + ug(u) for (x, t) ∈ S+,

u(t, 0) = m1, u(t, 1) = −m2 for t > 0,

u(t, s(t)) = 0 for t > 0,

ṡ(t) = −µ1ux(t, s(t)− 0) + µ2ux(t, s(t) + 0) for t ∈ {τ > 0 : 0 < s(τ) < 1},
u(0, x) = ϕ(x) for 0 ≤ x ≤ 1,

s(0) = ℓ,

where S− (resp. S+) is an open subset of Q := (0,∞) × (0, 1) with x < s(t) (resp x > s(t).
When f ≡ 0 and g ≡ 0, the free boundary problem (P) is quite similar to a two-phase Stefan
problem for which there are a lot of contributions.

We can construct a local solution (u(t, x), s(t)) of (P) with use of Schauder’s fixed point
theorem. In order to extend the local solution to a time-global solution, we employ the maxi-
mum principle for parabolic differential equations and energy methods to derive some a priori
estimates. Here it should be noted that, if m1 = 0 (resp. m2 = 0), then the free boundary
x = s(t) may touch the fixed boundary x = 0 (resp. x = 1) in a finite time. When such
a phenomenon happens, we take acount of (1.6) and continue to solve (P) as the standard
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boundary value problem without free boundary condition (1.7). Then it is possible to find a
unique global smooth solution of (P) when f, g and (ϕ, ℓ) satisfy appropriate conditions (see
(A.1)-(A.5) in §2).

Our next purpose is to study large-time behaviors of global smooth solutions to (P). We will
apply the theory of dynamical systems and introduce the notion of the ω-limit set associated
with each solution orbit {(u(t, ·), s(t)); t ≥ 0}. Since it is proved that (P) possesses the Lyapunov
functional, the standard theory for dynamical systems allows us to show that every element
(u∗, s∗) of the ω-,imit set satisfies the stationary problem corresponding to (P):

(SP)


d1u

∗
xx + u∗f(u∗) = 0, u∗ ≥ 0 in (0, s∗),

d2u
∗
xx + u∗g(u∗) = 0, u∗ ≤ 0 in (s∗, 1),

u∗(0) = m1, u∗(s∗) = 0, u∗(1) = −m2,

−µ1u
∗
x(s

∗ − 0) + µ2u
∗
x(s

∗ + 0) = 0 if 0 < s∗ < 1.

For the analysis of asymptotic properties for (P), the comparison principle is a very useful and
powerful tool because the smooth solutions of (P) possess the order preserving property. For
instance, if (ϕ, ℓ) is a subsolution for (SP), then it will be shown that the smooth solution
(u(t, ·), s(t)) of (P) with initial data (ϕ, ℓ) is monotone increasing in t and converges as t→ ∞
to a minimal solution (u∗, s∗) of (SP) in the class u∗ ≥ ϕ and s∗ ≥ ℓ (Theorem 4.3).

In the study of (SP), we will assume (for the sake of simplicity) that uf(u) and −ug(−u) are
nonlinear functions of logistic type. Then one can use the phase plane method and get complete
information on the structure of solutions to (SP). When both m1 and m2 are positive, it will
be proved that the set of solutions of (SP) consists of discrete elements. In such a situation,
any solution of (P) converges to one of stationary solutions as t → ∞. When m1 = m2 = 0,
every pair of the form (0, s∗) with 0 ≤ s∗ ≤ 1 satisfies (SP); such a pair is called a trivial
stationary solution. So the analysis in case m1 = m2 = 0 becomes more complicate than the
case m1 > 0 and m2 > 0. In order to investigate asymptotic behaviors of solutions to (P) as
t → ∞, the most important task is to construct suitable supersolutions and subsolutions. We
will give several examples of super- and subsolutions to derive valuable information on stability
and/or instability of every stationary solution.

As concluding remarks, we should note that our arguments are also valid for the free bound-
ary problem with Dirichlet boundary conditions in (1.2) replaced by homogeneous Neumann
boundary conditions

u1,x(t, 0) = 0, u2,x(t, L) = 0, t > 0.

In 2010, Du and Lin [2] proposed an interesting free boundary problem related with (1.1)-
(1.3). Their problem models the invasion of a single species and it can be interpreted as a
one-phase nonlinear Stefan problem. Set u1 = u, u2 = 0, D1 = d, L = ∞ and β1 = µ in (1.1)
and (1.3); then 

ut = duxx + uf(u) t > 0, 0 < x < s(t),

u(t, s(t)) = 0, t > 0,

ṡ(t) = −µux(t, s(t)), t > 0.

(1.9)

In [2], initial and boundary (x = 0) conditions are given by
ux(t, 0) = 0,

s(0) = s0,

u(0, x) = u0(x) 0 ≤ x ≤ s0,

(1.10)

where u0 is a nonnegative function. When f is given by f(u) = a − bu with positive a, b, Du
and Lin obtained a remarkable result on spreading-vanishing dichotomy for (1.9) -(1.10); that
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is, every solution (u, s) of (1.9)-(1.10) satisfies one of the following asymptotic behaviors as
t→ ∞:

• Vanishing; lim
t→∞

s(t) ≤ (π/2)
√
d/a and lim

t→∞
‖u(t)‖C([0,s(t)]) = 0,

• Spreading; lim
t→∞

s(t) = ∞ and lim
t→∞

u(t, ·) = a

b
locally uniformly in [0,∞).

Moreover, it was also shown that, whenever the spreading happens, the free boundary satisfies

lim
t→∞

s(t)

t
= c∗,

where c∗ is a positive constant that is determined, independently of initial data, from a corre-
sponding semi-wave problem (for more details see also the work of Du and Lou [3]). The above
results attracted attentions of lots of researchers. The free boundary problem (1.9)-,(1.10) and
related problems have been investigated quite intensively. So one can find a number of interest-
ing results such as the classification of asymptotic behaviors of solutions, asymptotic estimates
of free boundaries and asymptotic profiles of solutions. See, for instance, [2], [3] and [5].

2 Assumptions and global solutions

We will study (P), in place of (1.1)-(1.3), under the following assumptions:

(A.1) f is locally Lipschitz continuous in [0,∞) and satisfies

f(1) = 0 and f(u) < 0 for u > 1.

(A.2) g is locally Lipschitz continuous in (−∞, 0] and satisfies

g(−1) = 0 and g(u) < 0 for u < −1.

(A.3) 0 ≤ m1 ≤ 1 and 0 ≤ m2 ≤ 1.

(A.4) 0 < ℓ < 1.

(A.5) ϕ ∈ H1(I) with I := (0, 1) satisfies ϕ(0) = m1, ϕ(ℓ) = 0, ϕ(1) = −m2 and (ℓ −
x)ϕ(x) ≥ 0 for x ∈ I.

Case m1 > 0 and m2 > 0

We begin with the existence of a unique global solution for (P) in case m1 > 0 and m2 > 0.

Theorem 2.1. ([7, Theorem I]) There exists a unique pair of functions (u, s) ∈ C(Q) ×
C([0,∞)), Q = [0,∞)× I, with the following properties:

(i) s satisfies s(0) = ℓ, ṡ ∈ L3(0,∞) ∩ L∞(δ,∞) for any δ > 0 and

b1 ≤ s(t) ≤ b2 for all t ≥ 0

with some bi ∈ (0, 1) (i = 1, 2).

(ii) u satisfies (1.8) and

0 ≤ u ≤M := max{1, sup
0≤x≤ℓ

ϕ(x)} in S−,

0 ≥ u ≥ −N := min{−1, inf
ℓ≤x≤1

ϕ(x)} in S+.
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(iii) Set u+ = max{u, 0} and u− = −min{u, 0}. Then u± ∈ C([0,∞); H1(I)) and

sup
t≥0

‖u+(t)‖H1(I) <∞, sup
t≥0

‖u−(t)‖H1(I) <∞.

Moreover,
sup
t≥δ

‖(u+)x(t)‖L∞(I) <∞, sup
t≥δ

‖(u−)x(t)‖L∞(I) <∞

for any δ > 0.

(iv) ut ∈ L2(S−) ∩ L2(S+).

(v) ut, uxx ∈ C(S−) ∩ C(S+) and u satisfies (1.4)-(1.5).

(vi) For any δ > 0, ux(t, x) is Hölder continuous in (t, x) ∈ {(τ, y) : τ ≥ δ, 0 ≤ y ≤
s(t)} ∪ {(τ, y) : τ ≥ δ, s(t) ≤ y ≤ 1} and ṡ(t) is Hölder continuous in t ∈ [δ,∞).

(vii) (u, s) satisfies (1.6) and (1.7).

Remark 2.1. Theorem 2.1 assures the existence of a global solution (u, s) for (P). The
existence of a local solution to (P) can be proved with use of Schauder’s fixed point theorem
and its extension to a global solution is assured by some a priori estimates. The uniqueness
of a solution is a consequence of the comparison theorem for (P). Finally, the regularity of
the solution is shown by using the theory of evolution equations and embedding theorems. For
details, see [7].

In what follows, we say that (u, s) is a smooth solution of (P) when it possesses the regularity
properties given in Theorem 2.1.

Since the global existence result is established in case that both m1 and m2 are positive, our
next task is to study large-time behaviors of smooth solutions. Let (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) denote
the smooth solution of (P) with initial data (ϕ, ℓ) satisfying (A.4) and (A.5). We introduce the
notion of the ω-limit set associated with the solution orbit {(u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) : t ≥ 0} as
follows:

ω(ϕ, ℓ) : = {(u∗, s∗) ∈ H1(I)× Ī : there exists a sequence {tn} ↑ ∞ such that

s(tn;ϕ, ℓ) → s∗ and u±(tn;ϕ, ℓ) → (u±)∗ in H1(I) as n→ ∞}.
(2.1)

We say that {(u(tn;ϕ, ℓ), s(tn;ϕ, ℓ))} converges to (u∗, s∗) in the sense of Ω-topology if it has
the convergence properties in (2.1).

By Theorem 2.1 ṡ(·;ϕ, ℓ) ∈ L3(0,∞) and that {u(t;ϕ, ℓ); t ≥ 0} is bounded in H1(I). Then
Ascoli-Arzela’s theorem implies that {u(t;ϕ, ℓ); t ≥ 0} is relatively compact in C(Ī). Moreover,
t 7→ s(t;ϕ, ℓ) is uniformly Hölder continuous with exponent 2/3. Therefore, repeating the
arguments of [7, §4 and §6] one can show the {u±(t;ϕ, ℓ); t ≥ 0} is relatively compact in H1(I).
These considerations show that ω(ϕ, ℓ) is a nonempty compact set in H1(I)× Ī.

The structure of the ω-imit set is given by the following theorem.

Theorem 2.2. ([7, Theorem II]) Assume m1,m2 ∈ (0, 1] and let ω(ϕ, ℓ) be the ω-limit set
associated with the smooth solution (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) of (P).

(i) ω(ϕ, ℓ) is a nonempty, connected and compact set in H1(I)× Ī.
(ii) ω(ϕ, ℓ) is positively invariant: if (u∗, s∗) ∈ ω(ϕ ℓ), then (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) ∈ ω(ϕ, ℓ)

for every t ≥ 0.
(iii) If (u∗, s∗) ∈ ω(ϕ, ℓ), then it satisfies (SP) with 0 < s∗ < 1.
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In Theorem 2.2, (SP) is called a stationary problem associated with (P) and any pair (u∗, s∗)
satisfying (SP) is called a stationary solution for (P). Theorem 2.2 helps us to get useful in-
formation on asymptotic behaviors of smooth solutions to (P) as t → ∞. For instance, if it
is proved that stationary solutions are isolated, then {(u(t;ϕ, ℓ), s(t;ϕ, ℓ))} converges to one of
stationary solutions (in the sense of Ω-topology) as t → ∞. So it becomes very important to
investigate the structure of the set of stationary solutions.

Case m1 = 0 or m2 = 0

When m1 = 0 or m2 = 0, there is possibility that the free boundary x = s(t) hits one of the
fixed boundaries x = 0, 1 in a finite time; say, s(T ∗) = 1 with some T ∗ ∈ (0,∞) Then one can
see from the strong maximum principle (see the monograph of Protter and Weinberger [10])
that the free boundary never leaves the fixed boundary x = 1 after t = T ∗.

We will give an existence result for (P) in a typical case m1 = m2 = 0. We use the following
notation:

S−
δ,T = {(t, x) ∈ Q : δ < t < T and 0 < x < s(t)},
S+
δ,T = {(t, x) ∈ Q : δ < t < T and s(t) < x < 1}.

Theorem 2.3. ([9, Theorems 2.1 and 2.2]) Assume m1 = m2 = 0. Under assumptions
(A.1)-(A.5), there exists T ∗ ∈ (0,∞] such that(P) admits a unique solution (u, s) ∈ C([0, T ∗]×
Ī)× C([0, T ∗]) with the following properties:

(i) (u, s) satisfies (1.8).

(ii) ṡ ∈ L3(0, T ∗), 0 < s(t) < 1 for t ∈ [0, T ∗). If T ∗ <∞, then s(T ∗) = 0 or 1.

(iii) (u, s) satisfies

0 ≤ u ≤M := max{1, sup
0≤x≤ℓ

ϕ(x)} in S−
0,T∗ ,

0 ≥ u ≥ −N := min{−1, inf
ℓ≤x≤1

ϕ(x)} in S+
0,T∗ .

(iv) u± ∈ C([0, T ∗); H1
0 (I)). If T ∗ <∞, then u± ∈ C([0, T ∗]; H1

0 (I)).

(v) (u+)x ∈ L∞(S−
δ,T∗), (u−)x ∈ L∞(S+

δ,T∗) and ṡ ∈ L∞(δ, T ∗) for any δ ∈ (0, T ∗).

(vi) ut ∈ L2(S−
0,T∗) ∩ L2(S+

0,T∗).

(vii) ut, uxx ∈ C(S−
0,T∗) ∩ C(S+

0,T∗) and (u, s) satisfies (1.4)-(1.5).

(viii) For any δ, δ′ ∈ (0, T ∗), ux is Hölder continuous with respect to (t, x)in {(τ, y) ∈
S−
δ,T∗ : s(τ) ≥ δ′} and {(τ, y) ∈ S+

δ,T∗ : s(τ) ≤ 1 − δ′} and ṡ is Hölder continuous with respect
to t ∈ [δ, T ∗].

(ix) (u.s) satisfies (1.6) and (1.7).

As is stated before, the free boundary x = s(t) may reach one of fixed boundaries at a finite
time t = T ∗, but it never leaves the fixed boundary after t = T ∗. If we intend to continue to
solve (P) for t ≥ T ∗, it would be reasonable to study the problem by setting s(t) ≡ 0 or s(t) ≡ 1
for t ≥ T ∗ in view of (1.6). If s(T ∗) = 1 (resp. s(T ∗) = 0), we understand to solve the standard
initial boundary value problem with s(t) ≡ 1 (resp. s(t) ≡ 0) for t ≥ T ∗ and initial data u(T ∗)
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at initial time T ∗. In this situation, we have to neglect the Stefan condition (1.7). Our global
existence result is given in the following manner.

Theorem 2.4. ([9, Theorem 3.1]) Assume m1 = m2 = 0. Under assumptions (A.1)-(A.5),
there exists a unique solution (u, s) ∈ C(Q̄)× C[0,∞) with the following properties:

(i) (u, s) satisfies (1.8).

(ii) ṡ ∈ L3(0,∞) and s satisfies one of the following properties; 0 < s(t) < 1 for all t > 0,
s(t) = 0 for all t ≥ T ∗ or s(t) = 1 for all t ≥ T ∗ with some T ∗ ∈ (0,∞).

(iii) (u, s) satisfies

0 ≤ u ≤M := max{1, sup
0≤x≤ℓ

ϕ(x)} in S−,

0 ≥ u ≥ −N := min{−1, inf
ℓ≤x≤1

ϕ(x)} in S+.

(iv) u± ∈ C([0,∞); H1
0 (I)).

(v) (u+)x ∈ L∞(S−
δ,∞), (u−)x ∈ L∞(S+

δ,∞) and ṡ ∈ L∞(δ,∞) for any δ > 0.

(vi) ut ∈ L2(S−) ∩ L2(S+).

(vii) ut, uxx ∈ C(S−) ∩ C(S+) and (u, s) satisfies (1.4)-(1.5).

(viii) For any δ > 0 and δ′ > 0, ux is Hölder continuous with respect to (t, x) in {(τ, y) ∈
S−
δ,∞ : s(τ) ≥ δ′} and {(τ, y) ∈ S+

δ,∞ : s(τ) ≤ 1− δ′} and ṡ is Hölder continuous with respect

to t in {τ ≥ δ; 0 < s(τ) < 1}.

(ix) (u, s) satisfies (1.6) and (1.7).

Finally we will give complete information on the structure of the ω limit set.

Theorem 2.5. ([9, Theorem 6.2]) Under the assumption of m1 = m2 = 0 and let ω(ϕ, ℓ) be the
ω-limit set associated with the smooth solution (u(t;ϕ, ℓ), s(t;ϕ, ℓ)) of (P). Then the following
properties hold true.

(i) ω(ϕ, ℓ) is a nonempty, connected and compact set in H1
0 (I)× Ī.

(ii) ω(ϕ, ℓ) is positively invariant: if (u∗, s∗) ∈ ω(ϕ ℓ), then (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) ∈ ω(ϕ, ℓ)
for every t ≥ 0.

(iii) If (u∗, s∗) ∈ ω(ϕ, ℓ), then it satisfies

(SP− 0)


d1u

∗
xx + u∗f(u∗) = 0, u∗ ≥ 0 in (0, s∗),

d2u
∗
xx + u∗g(u∗) = 0, u∗ ≤ 0 in (s∗, 1),

u∗(0) = u∗(s∗) = u∗(1) = 0,

−µ1u
∗
x(s

∗ − 0) + µ2u
∗
x(s

∗ + 0) = 0 if 0 < s∗ < 1.

3 Basic estimates

In this section we will provide basic estimates for every smooth solution of (P). For s ∈ I = (0, 1)
and u ∈ H1(I) satisfying u(s) = 0, we introduce the following functional

E(u, s) =
µ2
1

2

∫ s

0

u2x dx+
µ2
2

2

∫ 1

s

u2x dx− µ2
1

d1

∫ 1

0

F (u) dx− µ2
2

d2

∫ 1

s

G(u)dx, (3.1)
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where

F (u) =

∫ u

0

vf(v)dv and G(u) =

∫ u

0

vg(v)dv.

Proposition 3.1. Assume m1,m2 ∈ (0, 1] and let (u, s) be the smooth solution of (P). Then it
holds that

E(u(t), s(t)) +
µ2
1

d1

∫ t

0

∫ s(τ)

0

u2t (τ, x)dxdτ +
µ2
2

d2

∫ t

0

∫ 1

s(τ)

u2t (τ, x)dxdτ

+
1

2

∫ t

0

|ṡ(τ)|3dτ ≤ E(ϕ, ℓ) for all t ≥ 0.

Proof. We begin with the following identity for the smooth solution (u(t, x), s(t)) of (P):

d

dt

∫ s(t)

0

u2x dx = u2x(t, s(t)− 0)ṡ(t) + 2ux(t, s(t)− 0)ut(t, s(t))− 2

∫ s(t)

0

uxxut dx. (3.2)

It follows from the free boundary condition that

J(t,∆t) := u(t+∆t, s(t+∆t))− u(t, s(t)) = 0.

If s(t+∆t) ≥ s(t), then

J(t,∆t) = {u(t+∆t, s(t+∆t)− u(t+∆t, s(t))}+ {u(t+∆t, s(t))− u(t, s(t))}
= ux(t+∆t, s(t) + θ(s(t+∆t)− s(t)))(s(t+∆t)− s(t)) + ut(t+ θ′∆t, s(t))∆t,

with some θ, θ′ ∈ [0, 1]. Recalling the Hölder continuity of ux with respect to (t, x) up to the
boundary (see [7, (4.27)]) we divide the above relation by ∆t and let ∆t→ 0. Then, by virtue
of J(t,∆t) = 0,

ux(t, s(t)− 0)ṡ(t) + ut(t, s(t)) = 0. (3.3)

On the other hand, if s(t+∆t) ≤ s(t), then

J(t,∆t) = {u(t+∆t, s(t+∆t))− u(t, s(t+∆t))}+ {u(t, s(t+∆t))− u(t, s(t))}
= ut(t+ θ∆t, s(t+∆t))∆t+ ux(t, s(t) + θ′(s(t+∆t)− s(t)))(s(t+∆t)− s(t))

with some θ, θ′ ∈ [0, 1]. Dividing the above relation by ∆t and letting ∆ → 0 we se from
J(t,∆t) = 0 that

ut(t, s(t)) + ux(t, s(t)− 0)ṡ(t) = 0. (3.4)

Therefore, it follows from (3.2), (3.3) and (3.4) that

d

dt

∫ s(t)

0

u2x(t, x) dx = −u2x(t, s(t)− 0)ṡ(t)− 2

∫ s(t)

0

uxx(t, x)ut(t, x) dx. (3.5)

Similarly, one can derive

d

dt

∫ 1

s(t)

u2x(t, x) dx = u2x(t, s(t) + 0)ṡ(t)− 2

∫ 1

s(t)

uxx(t, x)ut(t, x) dx. (3.6)

Since F (u(t, s(t)) = G(u(t, s(t)) = 0, it is easy to see

d

dt

∫ s(t)

0

F (u(t, x))dx =

∫ s(t)

0

(uf(u))(t, x)ut(t, x)dx, (3.7)

d

dt

∫ 1

s(t)

G(u(t, x))dx =

∫ 1

s(t)

(ug(u))(t, x)ut(t, x)dx. (3.8)

8



Then it follows from (3.5)-(3.8) that

d

dt
E(u(t), s(t)) = −µ

2
1

d1

∫ s(t)

0

(d1uxx + uf(u))ut dx− µ2
2

d2

∫ 1

s(t)

(d2uxx + ug(u))ut dx

+
ṡ(t)

2
{−µ2

1u
2
x(t, s(t)− 0) + µ2

2u
2
x(t, s(t) + 0)}

= −µ
2
1

d1

∫ s(t)

0

u2t dx− µ2
2

d2

∫ 1

s(t)

u2t dx

+
ṡ(t)

2
{−µ1ux(t, s(t)− 0) + µ2ux(t, s(t) + 0)}

× {µ1ux(t, s(t)− 0) + µ2ux(t, s(t) + 0)}

(3.9)

Since u ≥ 0 in S− and u ≤ 0 in S+, the strong maximum principle gives

ux(t, s(t)− 0) < 0 and ux(t, s(t) + 0) < 0

(see [10]). Hence it follows from ṡ(t) = −µ1ux(t, s(t)− 0) + µ2ux(t, s(t) + 0) that

|ṡ(t)| ≤ −µ1ux(t, s(t)− 0)− µ2ux(t, s(t) + 0).

In view of the above relations, we obtain from (3.9)

d

dt
E(u(t), s(t)) ≤ −µ

2
1

d1

∫ s(t)

0

u2t dx− µ2
2

d2

∫ 1

s(t)

u2t dx− 1

2
|ṡ(t)|3. (3.10)

The integration of (3.10) with respect to t yields the assertion.

Remark 3.1. The estimate (ii) of Theorem 2.1 is a consequence of the maximum principle. So
Proposition 3.1 together with (ii) yields some other estimates in Theorem 2.1; ṡ ∈ L3(0,∞), ut ∈
L2(S−) ∩ L2(S+) and u± ∈ L∞(0,∞;H1(I)).

Proof of Theorem 2.2

As an application of Proposition 3.1 we will give a sketch of the proof of Theorem 2.2.
Let (ϕ, ℓ) satisfy (A.4), (A.5) and denote by (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) a smooth solution of

(P) with initial data (ϕ, ℓ). By Theorem 2.1 {u(t, ·;ϕ, ℓ) : t ≥ 0} is uniformly bounded in
C([0,∞)× Ī) and b ≤ s(t;ϕ, ℓ) ≤ 1− b with some b ∈ (0, 1). So Proposition 3.1 gives

sup
t≥0

‖u+(t;ϕ, ℓ)‖H1(I) <∞ and sup
t≥0

‖u−(t;ϕ, ℓ)‖H1(I) <∞ (3.11)

and ∫ ∞

0

|ṡ(t;ϕ, ℓ)|3 dt <∞. (3.12)

Ascoli-Arzela’s theorem together with (3.11) assues that {u(t;ϕ, ℓ) : t ≥ 0} is relatively compact
in C(Ī). Moreover, (3.12) implies that t 7→ s(t;ϕ, ℓ) uniformly Hölder continuous with exponent
2/3. Then repeating the arguments of [7, §4] and making use of the embedding theorems in
the theory of evolution equations (see [4]) we can prove that {u±(t;ϕ, ℓ) : t ≥ 0} is relatively
compact in H1(I) (see also [9, Lemma 6.1]). Hence we see that ω(ϕ, ℓ) is nonempty.

In order to complete the proof of (i) and (ii) of Theorem 2.2, we recall that (ϕ, ℓ) 7→
(u(t;ϕ, ℓ), s(t, ϕ, ℓ)) is continuous in H(I)× [0, 1] for every t ≥ 0 (see [7, Theorem 6.5] or [16]).
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Therefore, by the standard method in the theory of dynamical systems, it is possible to show
that ω(ϕ, ℓ) is compact, connected and positively invariant in H1(I)× Ī.

We will next prove (iii). By (3.10), t 7→ E(u(t;ϕ, ℓ), s(t;ϕ, ℓ)) is strictly decreasing and
bounded from below; so that there exists

lim
t→∞

E(u(t;ϕ, ℓ), s(t;ϕ, ℓ)) = E∞. (3.13)

Now take any (u∗, s∗) ∈ ω(ϕ, ℓ). Since there exists a sequence {tn} ↑ ∞ such that
lim

n→∞
(u(tn;ϕ, ℓ), s(tn;ϕ, ℓ)) = (u∗, s∗) in the sense of Ω-topology, it follows from the definition

of E(u, s) that
lim

n→∞
E(u(tn;ϕ, ℓ), s(tn;ϕ, ℓ)) = E(u∗.s∗). (3.14)

Then we see from (3.13) and (3.14) that any (u∗, s∗) ∈ ω(ϕ, ℓ) satisfies

E(u∗, s‘) = E∞. (3.15)

Owing to the result of (ii), ω(ϕ.ℓ) is positively invariant, which implies that, if (u∗, s∗) ∈ ω(ϕ, ℓ),
then

(u(t;u∗, s∗), s(t;u∗, s∗)) ∈ ω(ϕ, ℓ) for every t ≥ 0.

Hence it follows from (3.15)

E(u(t;u∗, s∗), s(t;u∗, s∗)) = E∞ for every t ≥ 0; (3.16)

so that
d

dt
E(u(t;u∗, s∗), s(t;u∗, s∗)) = 0 for t ≥ 0.

Therefore, we see from (3.10) that

ut(t, ·;u∗, s∗) = 0 and ṡ(t;u∗, s∗) = 0.

So it follows that u(t, ·;u∗, s∗) ≡ u∗ and s(t;u∗, s∗) ≡ s∗. This fact implies that (u∗, s∗) satisfies
(SP).

We next give another important estimate in case m1 = m2 = 0.

Proposition 3.2. In addition to(A.1)-(A.5), assume m1 = m2 = 0. Let (u, s) ∈ C([0, T ] ×
Ī) × C([0, T ]) be a smooth solution of (P) satisfying(i)-(iv), (vi)-(ix) of Theorem 2.3 with T ∗

replaced by T . Then

(u+)x ∈ L∞(S−
δ,T ), (u−)x ∈ L∞(S+

δ,T ) and ṡ ∈ L∞(δ, T )

for any δ ∈ (0, T ).

Proof. First we assume
ϕx ∈ L∞(I) (3.17)

in addition to (A.5). Applying Moser’s technique we will show

ux ∈ L∞(S−
0,T ) ∩ L

∞(S+
0,T ), (3.18)

in other words,
(u+)x ∈ L∞(S−

0,T ) and (u−)x ∈ L∞(S+
0,T ).
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(For Moser’s technique, see the works of [1] or [11].)
Let p be any positive integer. Then

d

dt

∫ s(t)

0

u2px dx = u2px (t, s(t)− 0)ṡ(t) + 2p

∫ s(t)

0

u2p−1
x uxt dx

= u2px (t, s(t)− 0)ṡ(t) + 2pu2p−1
x (t, s(t)− 0)ut(t, s(t))

− 2p(2p− 1)

∫ s(t)

0

u2p−2
x uxxut dx.

By virtue of (3.3) and (3.4) , the above relation yields

d

dt

∫ s(t)

0

u2px dx = −(2p− 1)u2px (t, s(t)− 0)ṡ(t)

−2p(2p− 1)

∫ s(t)

0

u2p−2
x uxx(d1uxx + uf(u)) dx.

(3.19)

Here it should be noted that∫ s(t)

0

u2p−2
x u2xx dx =

1

p2

∫ s(t)

0

|(upx)x|2 dx,

−
∫ s(t)

0

u2p−2
x uxxuf(u) dx = − 1

2p− 1

∫ s(t)

0

(u2p−1
x )xuf(u) dx =

1

2p− 1

∫ s(t)

0

u2px f̃(u) dx,

where f̃(u) =
d

du
uf(u). Hence it follows from (3.19) that

d

dt

∫ s(t)

0

(µ1ux)
2pdx+

2(2p− 1)d1
p

∫ s(t)

0

|(µp
1u

p
x)x|2 dx

+ (2p− 1)(µ1ux)
2p(t, s(t)− 0)ṡ(t) = 2p

∫ s(t)

0

(µ1ux)
2pf̃(u) dx.

(3.20)

Similarly, once can deduce

d

dt

∫ 1

s(t)

(µ2ux)
2pdx+

2(2p− 1)d2
p

∫ 1

s(t)

|(µp
2u

p
x)x|2 dx

− (2p− 1)(µ2ux)
2p(t, s(t) + 0)ṡ(t) = 2p

∫ 1

s(t)

(µ2ux)
2pg̃(u) dx,

(3.21)

where g̃(u) =
d

du
ug(u). By (iii) of Theorem 2.3, −N ≤ u(t, x) ≤M in [0, T ]× Ī; so that

sup
(t,x)∈S−

0,T

|f̃(u(t, x))| ≤M∗
1 and sup

(t,x)∈S+
0,T

|g̃(u(t, x))| ≤M∗
2 (3.22)

with positive constants M∗
1 and M∗

2 independent of T . Therefore, it follows from (3.20), (3.21)
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and (3.22) that

d

dt

{∫ s(t)

0

(µ1ux)
2pdx+

∫ 1

s(t)

(µ2ux)
2pdx

}

+
2(2p− 1)

p

{
d1

∫ s(t)

0

|(µp
1u

p
x)x|2 dx+ d2

∫ 1

s(t)

|(µp
2u

p
x)x|2 dx

}
+ (2p− 1){(µ1ux)

2p(t, s(t)− 0)− (µ2ux)
2p(t, s(t) + 0)}ṡ(t)

≤ 2p

{
M∗

1

∫ s(t)

0

(µ1ux)
2pdx+M∗

2

∫ 1

s(t)

(µ2ux)
2pdx

}
.

(3.23)

Since ux(t, s(t)± 0) < 0 by the strong maximum principle and p is a positive integer, we have

{(µ1ux)
2p(t, s(t)− 0)− (µ2ux)

2p(t, s(t) + 0)}ṡ(t)
=
{
(−µ1ux(t, s(t)− 0))2p−1 + · · ·+ (−µ2ux(t, s(t) + 0))2p−1

}
× {−µ1ux(t, s(t)− 0) + µ2ux(t, s(t) + 0)} ṡ(t)

=
{
(−µ1ux(t, s(t)− 0))2p−1 + · · ·+ (−µ2ux(t, s(t) + 0))2p−1

}
ṡ(t)2

≥
{
(−µ1ux(t, s(t)− 0))2p−1 + (−µ2ux(t, s(t) + 0))2p−1

}
ṡ(t)2.

Observe that
|ṡ(t)| ≤ −µ1ux(t, s(t)− 0)− µ2ux(t, s(t) + 0)

and
a2p−1 + b2p−1 ≥ 22−2p(a+ b)2p−1 for all a, b > 0;

so that the above relations yield

{(µ1ux)
2p(t, s(t)− 0)− (µ2ux)

2p(t, s(t) + 0)}ṡ(t) ≥ 22−2p|ṡ(t)|2p+1. (3.24)

Therefore, the following estimate can be obtained from (3.23) and (3.24) ;

d

dt

{∫ s(t)

0

(µ1ux)
2pdx+

∫ 1

s(t)

(µ2ux)
2pdx

}

+ 2d0

{∫ s(t)

0

|(µp
1u

p
x)x|2 dx+

∫ 1

s(t)

|(µp
2u

p
x)x|2 dx

}
+

2p− 1

22p−2
|ṡ(t)|2p+1

≤ 2pM∗

{∫ s(t)

0

(µ1ux)
2pdx+

∫ 1

s(t)

(µ2ux)
2pdx

}
,

(3.25)

where d0 = min{d1, d2} and M∗ = max{M∗
1 ,M

∗
2 }.

We now recall the Gagliardo-Nirenberg inequality in the following form:

‖v‖L2(α,β) ≤ C‖vx‖1/3L2(α,β)‖v‖
2/3
L1(α,β) for all v ∈ H1(α, β), (3.26)

where C is a positive number independent of α and β. Applying Young’s inequality to (3.26)
we see that for any ε > 0

‖v‖2L2(α,β) ≤
ε

3
‖vx‖2L2(α,β) +

2C3

3ε1/2
‖v‖2L1(α,β). (3.27)
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We set v = upx and (α, β) = (0, s(t)) or (s(t), 1) in (3.27); then

‖v‖2L2(α,β) = ‖ux‖2pL2p(α,β), ‖v‖2L1(α,β) = ‖ux‖2pLp(α,β) and ‖vx‖2L2(α,β) = ‖(upx)x‖2L2(α,β).

Therefore, (3.27) assures that, for any ε > 0,

‖(upx)x‖2L2(α,β) ≥
3

ε
‖ux‖2pL2p(α,β) −

2C3

ε3/2
‖ux‖2pLp(α,β). (3.28)

Substitution of (3.28) into (3.25) gives

d

dt

{∫ s(t)

0

(µ1ux)
2pdx+

∫ 1

s(t)

(µ2ux)
2pdx

}

+

(
6d0
ε

− 2pM∗
)(∫ s(t)

0

(µ1ux)
2pdx+

∫ 1

s(t)

(µ2ux)
2pdx

)
+

2p− 1

22p−2
|ṡ(t)|2p+1

≤ 2C3d0
3ε3/2


(∫ s(t)

0

(µ1ux)
p dx

)2

+

(∫ 1

s(t)

(µ2ux)
p dx

)2
 .

(3.29)

If we take p = 2k (k = 1, 2, 3, · · · ) and set

Xk(t) =

∫ s(t)

0

(µ1ux(t, x))
2kdx+

∫ 1

s(t)

(µ2ux(t, x))
2kdx,

then it follows from (3.29) that

d

dt
Xk+1(t) +

(
6d0
ε

− 2k+1M∗
)
Xk+1(t) ≤

2C3d0
3ε3/2

Xk(t)
2.

Here ε > 0 is arbitrary. Taking ε =
3d0

2k+1M∗ in the above inequality we are lead to

d

dt
Xk+1(t) + 2k+1M∗Xk+1(t) ≤ 23(k+1)/2L∗Xk(t)

2 (3.30)

with L∗ =
2C3(M∗)3/2

9
√
3d0

. Solving differential inequality (3.30) we obtain

Xk+1(t) ≤ max

{
Xk+1(0), 2

k/2C∗
(

sup
0≤t≤T

Xk(t)

)2
}

for all t ∈ [0, T ] (3.31)

with C∗ =

√
2L∗

M∗ =
2
√
2M∗C3

9
√
3d0

. By (A.6)

Xk(0) =

∫ ℓ

0

(µ1ϕx)
2kdx+

∫ 1

ℓ

(µ2ϕx)
2kdx ≤ K2k , (3.32)

where K = µ‖ϕx‖L∞(I) with µ = max{µ1, µ2}. Moreover, Proposition 3.1 gives

X1(t) ≤ K1 for all 0 ≤ t ≤ T, (3.33)
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where K1 is a positive constant depending only on ‖ϕ‖H1(I). From (3.31), (3.32) and (3.33) we
have

X2(t) ≤ max{X2(0),
√
2C∗( sup

0≤t≤T
X1(t))

2} ≤ max{K4,
√
2C∗K2

1}

for t ∈ [0, T ]. Here we may assume

K4 ≤
√
2C∗K2

1 , 2C∗ ≥ 1

without loss of generality. Indeed, it suffices to make M∗ = max{M∗
1 ,M

∗
2 } large so that the

above conditions are satisfied (see (3.22)). Then solving (3.31) by iteration one can deduce

sup
0≤t≤T

Xk+1(t) ≤ 2ak(C∗)bkKck
1 (3.34)

with

ak =
1

2

k−1∑
i=0

(k − i)2i = 2k − k

2
− 1,

bk =

k−1∑
i=0

2i = 2k − 1 and ck = 2k.

Hence
( sup
0≤t≤T

Xk+1(t))
1/2k+1

≤ 2ak/2
k+1

(C∗)bk/2
k+1

(K1)
ck/2

k+1

.

Letting k → ∞ in the above relation we are led to

µ1 sup
0≤t≤T

‖ux(t)‖L∞(0,s(t)) + µ2 sup
0≤t≤T

‖ux(t)‖L∞(s(t),1) ≤
√
2C∗K1. (3.35)

In view of u = u+ − u= with u+ = u|[0,s(t)] and u− = −u|[s(t),1], we have shown

(u+)x ∈ L∞(S−
0,T ) and (u−)x ∈ L∞(S+

0,T )

when ϕ satisfies (A.6). It is easy to prove ṡ ∈ L∞(0, T ) from the Stefan condition (1.7).
Finally we will show the assertion for general ϕ. The regularity properties of smooth solu-

tions show that the solution (u, s) of (P) satisfies

ux(t, ·) ∈ L∞(0, s(t)) ∩ L∞(s(t), 1) for any t ∈ (0, T ].

Then take any δ ∈ (0, T ]. Repeating the preceding arguments with ϕ and [0, T ] replaced by
u(δ, ·) and [δ, T ] one can prove (3.35). This fact completes the proof.

Proof of Theorem 2.3 Applying Propositions 3.1 and 3.2 we will give the proof of Theorem
2.3.

Since 0 < ℓ < 1, it is possible to apply the existence result of local smooth solutions of (P)
even if m1 = m2 = 0 (see [7, Theorems 3.1 and 4.3]). So there exists a positive number T such
that (P) possesses a smooth solution (u, s) in [0, T ]. Here a smooth solution (u, s) of (P) in
[0, T ] means that (u, s) has properties (i)-(iv) and (vi)-(ix) of Theorem 2.3 with T ∗ replaced by
T . We set

T ∗ = sup{T > 0 : (P) has a smooth solution (u, s) in [0, T ]}.
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Hereafter we assume T ∗ < ∞ because there is nothing left to prove if T ∗ = ∞. Note that
0 < s(t) < 1 for 0 ≤ t < T ∗; so that Proposition 3.1 is still valid for all t ∈ (0, T ∗). Hence we
see ṡ ∈ L3(0, T ∗), which assures that limt→T∗ s(t) exists. So define

s(T ∗) = lim
t→T∗

s(t).

We will show
s(T ∗) = 0 or S(T ∗) = 1 (3.36)

by contradiction. Assume 0 < s(T ∗) < 1. Repeating the arguments in [7, §4] we can rewrite
the initial boundary value problem in S−

0,T∗ (resp. S+
0,T∗) as the initial value problem for

an appropriate semilinear evolution equation in [0, T ∗]. With use of the regularity theory of
evolution equations and embedding theorems we can prove that the limits of u−(t) and u+(t)
as t→ T ∗ exist with respect to H1

0 (I)-norm. So define u(T ∗) = u+(T ∗)− u−(T ∗) with

u±(T ∗) = lim
t→T∗

u±(t) in H1
0 (I).

Since 0 < s(T ∗) < 1, we can study (P) for t ≥ T ∗ with (ϕ, ℓ) replaced by (u(T ∗), s(T ∗)) and,
therefore, prove the existence of a smooth solution in [T ∗, T ∗ + τ∗] with some τ∗ > 0. This
fact allows us to show that (P) has a smooth solution in [0, T ∗ + τ∗], which contradicts to the
definition of T ∗. Thus we have shown (3.36).

For the sake of simplicity, assume s(T ∗) = 1. Then one can rewrite the initial boundary
value problem in S−

0,T∗ as the initial boundary value problem in an appropriate cylindrical
domain which has been discussed in [7]. So the parabolic regularity theory implies that u is
smooth with respect to (t, x) ∈ S−

0,T∗ up to t = T ∗. In particular, we see

u+ ∈ C([0, T :];H1
0 (I)).

In order to show u− ∈ C([0, T ∗];H1
0 (I)), we will use Proposition 3.2. It should be noted that

the proof of this proposition allows us to derive

sup
δ≤t<T∗

‖u−x (t)‖L∞(I) = Cδ

with a positive number Cδ depending only on δ. Therefore,∫ 1

s(t)

(u−)x(t, x)
2dx ≤ ‖u−x (t)‖2L∞(1− s(t)) ≤ C2

δ (1− s(t)) → 0 as t→ T ∗.

This fact assures u− ∈ C([0, T ∗];H1
0 (I)); so that u ∈ C([0, T ∗];H1

0 (I)).
Finally it is easy to get other regularity properties of (u, s) from Propositions 3.1 and 3.2.

Proof of Theorem 2.5
We will give an alternative proof of Theorem 2.5 (in particular, (iii) of Theorem 2.5), which

is different from that of Theorem 2.2. For (ϕ.ℓ) satisfying (A.4) and (A.5), let (u, s) be the
smooth solution obtained in Theorem 2.4.

Step 1. We will collect some basic estimates for (u, s). Recall that Proposition 3.1 gives us

sup
t≥0

‖(u+)x(t)‖L2(I) ≤ C1, sup
t≥0

‖(u−x (t)‖L2(I) ≤ C1, (3.37)∫ ∞

0

|ṡ(t)|3dt ≤ C2, (3.38)∫ ∞

0

‖(u+)t(t)‖2L2(I)dt ≤ C3,

∫ ∞

0

‖(u−)t(t)‖2L2(I)dt ≤ C3, (3.39)
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where Ci (i = 1, 2, 3) are positive constants depending only on (ϕ, ℓ). It also follows from
Proposition 3.2 that, for any δ > 0,

sup
t≥δ

‖(u+)x(t)‖L∞(I) ≤ C4(δ), sup
t≥δ

‖(u−)x(t)‖L∞(I) ≤ C4(δ) (3.40)

with a positive constant C4(δ).

Step 2. We will give another important estimates of solutions for parabolic boundary value
problems with moving boundaries.

We first assume
δ∗ ≤ s(t) ≤ 1− δ∗ for t ≥ 0 (3.41)

with some δ∗ > 0. Our strategy is to rewrite the initial boundary value problem in S− by
putting

v(t, y) = u(t, x) with x = s(t)y ∈ [0, s(t)].

Then v satisfies the following problem with fixed boundaries y = 0, 1:{
vt = a(t)vyy + k(t, y)vy + vf(v), t > 0, 0 < y < 1,

v(t, 0) = v(t, 1) = 0, t > 0,
(3.42)

where

a(t) =
d1
s(t)2

and k(t, y) =
ṡ(t)y

s(t)
.

Define a closed linear operator Ap with 1 ≤ p <∞ by

Apv = −vyy with domain D(Ap) =W 1,p
0 (I) ∩W 2,p(I).

We also define Ap(t) = a(t)Ap and handle (3.42) in the framework of an evolution equation.
In what follows, we take any τ ≥ 1 + δ wth δ > 0 and fix any T > 0. We study (3.42) in

the following form
vt +Ap(t)v = h(t, y), τ − 1 ≤ t ≤ τ + T, (3.43)

where
h(t, y) = k(t, y)vy(t, y) + v(t, y)f(v(t, y)).

Since
0 ≤ v(t, y) ≤M for (t, y) ∈ [0,∞)× [0, 1]

by Theorem 2.4, it follows from (3.40) that

‖h(t)‖Lp(I) ≤M1(1 + |ṡ(t)|), (3.44)

whereM1 is a positive number independent of τ and T . Here we observe that {Ap(t)}τ−1≤t≤τ+T

generates an evolution operator {Up(t, σ)}τ−1≤σ≤t≤τ+T and that {Up(t, σ)} satisfies basic esti-
mates independent of τ and T (see [7, §4]). By (3.43), v is expressed as

v(t) = Up(t, τ − 1)v(τ − 1) +

∫ t

τ−1

Up(t, σ)h(σ)dσ. τ − 1 ≤ t ≤ τ + T.

On account of (3.44) one can apply the arguments in [7, §4] to the above expression and derive

‖vy‖Cρ,2ρ([τ,τ+T ]×Ī) ≤M2 (3.45)
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with some ρ ∈ (0, 1), where M2 is a positive constant independent of τ and T . In particular,
we note that

ux(t, s(t)− 0) =
vy(t, 1)

s(t)
∈ Cρ([τ, τ + T ]). (3.46)

It is also possible to rewrite the boundary value problem in S+ by setting

u(t, x) = w(t, z) with z =
x− s(t)

1− s(t)
.

Then w satisfies {
wt = ã(t)wzz + k̃(t, z)wz + wg(w), t > 0, 0 < z < 1,

w(t, 0) = w(t, 1) = 0, t > 0,

where

ã(t) =
d2

(1− s(t))2
and k̃(t, z) =

ṡ(t)(1− z)

1− s(t)
.

Therefore, we repeat the preceding arguments and derive the following estimate in the same
way as (3.45):

‖wz‖Cρ,2ρ([τ,τ+T ]×Ī) ≤M3 (3.47)

with some ρ ∈ (0, 1) and M3 > 0 independently of τ and T . Then (3.47) implies

ux(t, s(t) + 0) =
wz(t, 0)

1− s(t)
∈ Cρ([τ, τ + T ]). (3.48)

By virtue of (3.46) and (3.48), the Stefan free boundary condition (1.7) yields

ṡ ∈ Cρ([τ, τ + T ]).

Step 3. We are now ready to study the structure of ω(ϕ, ℓ). Take any (u∗, ℓ∗) ∈ ω(ϕ, ℓ). Then
there exists {tn} ↑ such that

s(tn) → ℓ∗, u±(tn, ·) → (u∗)± in H1
0 (I) as n→ ∞. (3.49)

Note

u(t, x) = u+(t, x) for t > 0, 0 < x < s(t),

u(t, x) = −u−(t, x) for t > 0, s(t) < x < 1.

For t ≥ 0, we set
sn(t) = s(t+ tn).

First we assume
0 < ℓ∗ < 1.

Then there exists δ∗ ∈ (0, 1/4) such that

2δ∗ < sn(0) = s(tn) < 1− 2δ∗ for n ≥ 1.

Since t 7→ sn(t) is uniformly continuous by (3.38), there exists a positive number T > 0 such
that

δ∗ < sn(t) < 1− δ∗ for all n ≥ 1 and 0 ≤ t ≤ T. (3.50)
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Moreover, (3.38) also implies that {sn(t)}∞n=1 is equi-continuous for t ∈ [0, T ]. Then Ascoli-
Arzela’s theorem allows us to see that {sn(t)}∞n=1 is relatively compact in C([0, T ]). Choosing
a suitable subsequence {sn′} we can prove that

lim
n′→∞

sn′(t) = S∗(t) uniformly for 0 ≤ t ≤ T (3.51)

with some S∗ ∈ C([0, T ]). It also follows from (3.38) that∫ T

0

|ṡn(t)|3dt =
∫ tn+T

tn

|ṡ(t)|3dt ≤
∫ ∞

tn

|ṡ(t)|3dt→ 0 as n→ ∞. (3.52)

Here note the following identity:

sn(t) = sn(0) +

∫ t

0

ṡn(σ)dσ for 0 ≤ t ≤ T.

Setting n = n′ and letting n′ → ∞ in this identity one can prove from (3.49), (3.51) and (3.52)
that

S∗(t) = ℓ∗ for all 0 ≤ t ≤ T.

Hence we have the following convergence in place of (3.51):

lim
n→∞

sn(t) = S∗(t) ≡ ℓ∗ uniformly for t ∈ [0, T ]. (3.53)

Set
un(t, x) = u(t+ tn, x) and vn(t, y) = v(t+ tn, y).

It follows from (3.39) that∫ T

0

‖(u+n )t(t)‖2L2(I)dt =

∫ tn+T

tn

‖(u+)t(t)‖2L2(I)dt ≤
∫ ∞

tn

‖(u+)t(t)‖2L2(I)dt→ 0 (3.54)

as n→ ∞. Since

(u+n )t = (vn)t −
ṡn(t)y

sn(t)
(vn)y = (vn)t −

ṡn(t)x

sn(t)3
(u+n )x for 0 < x < sn(t),

(3.54) together with (3.40) and (3.52) implies∫ T

0

‖(vn)t(t)‖2L2(I)dt→ 0 as n→ ∞. (3.55)

Moreover, it follows from (3.45) that

‖(vn)y‖Cρ,2ρ([0,T ]×Ī) ≤M2 for all n ≥ 1.

This fact assures that both {vn} snf {(vn)y} are relatively compact in C([0, T ]× Ī). Therefore,
choosing a subsequence if necessary, we may conclude that{

vn → V in C([0, T ]× Ī),

(vn)y → Vy in C([0, T ]× Ī)
(3.56)
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with some V ∈∈ C0,1([0, T ]× Ī). Here it should be noted that vn satisfies
(vn)t = an(t)(vn)yy + kn(t, y)(vn)y + vnf(vn), 0 < t < T, 0 < y < 1,

vn(t, 0) = vn(t, 1) = 0, 0 < t < T,

vn(0, y) = u+(tn, s(tn)y), 0 < y < 1,

(3.57)

where

an(t) =
d1

sn(t)2
and kn(t, y) =

ṡn(t)y

sn(t)
.

In view of (3.53), (3.55), (3.56) and (3.57) we see that {(vn)yy} is convergent in L2((0, T )× I);
so

(vn)yy → Vyy in L2((0, T )× I) as n→ ∞. (3.58)

Therefore, on account of these convergence properties, we see that V satisfies

Vt = 0 = a∗Vyy + V f(V ) 0 < t < T, 0 < y < 1, (3.59)

with a∗ = d1/(ℓ
∗)2. Since

|u+(tn, s(tn)y)− u∗(ℓ∗y)| ≤ |u+(tn, s(tn)y)− u+(tn, ℓ
∗y)|+ |u+(tn, ℓ∗y)− u∗(ℓ∗y)|

≤ ‖(u+)x‖L∞(I)|s(tn)− ℓ∗|+ |u+(tn, ℓ∗y)− u∗(ℓ∗y)| → 0

for 0 ≤ y ≤ 1 as n→ ∞, it is seen from (3.56) and (3.59) that V (t, y) is independent of t and

V (t, y) ≡ V (0, y) = u∗(ℓ∗y) for 0 ≤ t ≤ T and 0 ≤ y ≤ 1. (3.60)

Thus (3.59) and (3.60) show

d1(u
∗)xx + u∗f(u∗) = 0 for 0 ≤ x ≤ ℓ∗ (3.61)

with u∗(0) = u∗(ℓ∗) = 0. Moreover, note

lim
n→∞

(un)x(t, sn(t)− 0) = lim
n→∞

(vn)y(t, 1)

s(tn)
=
Vy(t, 1)

ℓ∗
= (u∗)x(ℓ

∗ − 0) (3.62)

for 0 ≤ t ≤ T . We have used (3.60) in the last equality.
One can use essentially the same considerations for (u−)(t, x). So it is possible to prove that{

d2(u
∗)xx + u∗g(u∗) = 0, ℓ∗ < x < 1,

u∗(ℓ∗) = u(1) = 0
(3.63)

and
lim

n→∞
(un)(t, sn(t) + 0) = (u∗)x(ℓ

+ + 0) for t ∈ [0, T ]. (3.64)

Therefore, it follows from(3.52), (3.62) and (3.64) that for a.e. t ∈ [0, T ]

0 = lim
n→∞

ṡn(t) = −µ1 lim
n→∞

(un)x(t, sn(t)− 0) + µ2 lim
n→∞

(un)x(t, sn(t) + 0)

= −µ1(u
∗)x(ℓ

∗ − 0) + µ2(u
∗)x(ℓ

∗ + 0).

Thus we have shown that (u∗, ℓ∗) satisfies (SP-0) in case 0 < ℓ∗ < 1.
If ℓ∗ = 1, the one can repeat the preceding arguments and derive the conclusion from (3.61).

Since the analysis in case ℓ∗ = 0 is essentially the same, we omit it.
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4 Comparison principle

We will explain the comparison principle to study (P). For each (u, s) ∈ C(Q̄) × C(Ī) with
Q = (0,∞)×I and I = (0, 1), we say that (u, s) has property (R) when it satisfies the following
conditions:

(i) ux ∈ C(S−
δ,∞) ∩ C(S+

δ,∞) for any δ > 0,

(ii) ut, uxx ∈ C(S−) ∩ C(S+),
(iii) s ∈ C1((0,∞)).

Definition 4.1. Let (u, s) ∈ C(Q̄) × C(Ī) possess the property (R). Then (u, s) is called a
supersolution of (P) with initial data (ϕ, ℓ) if it satisfies the following:

ut ≥ d1uxx + uf(u) for (t, x) ∈ S−,

ut ≥ d2uxx + ug(u), u ≤ 0 for (t, x) ∈ S+,

u(t, 0) ≥ m1, u(t, 1) ≥ −m2 for t > 0,

u(t, s(t)) = 0 for t > 0,

ṡ(t) ≥ −µ1ux(t, s(t)− 0) + µ2ux(t, s(t) + 0) for t ∈ {τ > 0; 0 < s(τ) < 1},
u(0, x) = ϕ(x) for 0 ≤ x ≤ 1,

s(0) = ℓ.

On the other hand, if (u, s) satisfies the above relations with ” ≥” replaced by ” ≤” and “ u ≤ 0
in S+ ” replaced by “ u ≥ 0 in S−”, then it is called a subsolution of (P) with initial data
(ϕ, ℓ).

Remark 4.1. Let (u, s) be a suersolution of (P). Applying the strong maximum priciple to u
in S− we see that u > 0 in S−. Similarly, it (u,s) is a subsolution of (P), then u < 0 in S+.

Theorem 4.1. Let (ϕi, ℓi)(i = 1, 2) with ϕ1 6≡ ϕ2 satisfy (A.4) and (A.5). Assume that
(u1, s1) (resp. (u2, s2)) is a supersolution (resp. subsolution) of (P) with initial data (ϕ1, ℓ1)
(resp. (ϕ2, ℓ2)). If ϕ1 ≥ ϕ2 in I and ℓ1 > ℓ2, then

u1(t, x) > u2(t, x) for (t, x) ∈ Q

and
s1(t) > s2(t) for as long as s1(t) > 0 or s2(t) < 1.

Proof. First we will show by way of contradiction

s1(t) > s2(t) for t ≥ 0 (4.1)

as long as either s1(t) or s2(t) is distant from the fixed boundaries. Assume that there exists
T ∗ > 0 such that

s1(T
∗) = s2(T

∗) ∈ (0, 1) and s1(t) > s2(t) for 0 ≤ t < T ∗.

Then
ṡ1(T

∗) ≤ ṡ2(T
∗). (4.2)

Since

u1(t, 0) ≥ m1 ≥ u2(t, 0) and u1(t, s2(t)) > 0 = u1(t, s2(t)) for 0 < t < T ∗
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by virtue of Remark 4.1, the comparison principle for parabolic equations assures

u1(t, x) > u2(t, x) for 0 < t ≤ T ∗, 0 < x < s2(t)

(see, for instance, the monograph of Smoller [13]). In view of u1(T
∗, s1(T

∗)) = u2(T
∗, s2(T

∗)) =
0, Hopf’s boundary lemma implies

u1,x(T
∗, s1(T

∗)− 0) < u2,x(T
∗, s2(T

∗)− 0) (4.3)

Similarly, one can also prove

u1(t, x) > u2(t, x) for 0 < t ≤ T ∗, s1(t) < x < 1.

Applying Hopf’s boundary lemma again we see

u1,x(T
∗, s1(T

∗) + 0) > u2,x(T
∗, s2(T

∗) + 0). (4.4)

Then it follows from Definition 4.1 together with (4.3) and (4.4) that

ṡ1(T
∗) ≥ −µ1u1,x(T

∗, s1(T
∗)− 0) + µ2u1,x(T

∗, s1(T
∗) + 0)

> −µ1u2,x(T
∗, s2(T

∗)− 0) + µ2u2,x(T
∗, s2(T

∗) + 0) ≥ ṡ2(T
∗),

which contradicts to (4.2). Thus we have shown (4.1).
We now note that

u1(t, s2(t)) > 0 = u2(t, s2(t)) as long as 0 < s2(t) < 1

and
u1(t, s1(t)) = 0 ≥ u2(t, s1(t)) as long as 0 < s1(t) < 1.

It follows from the comparison principle for parabolic equations that

u1(t, x) > u2(t, x) for (t, x) ∈ S−
2 ∪ S+

1 ,

where S−
2 = {(t, x) ∈ Q : t > 0, 0 < x < s2(t)} and S+

1 = {(t, x) ∈ Q : t > 0, s1(t) < x < 1}.
For (t, x) ∈ S+

2 ∩ S−
1 with S+

2 = Q \ S−
2 and S−

1 = Q \ S+
1 , it holds that

u1(t, x) > 0 ≥ u2(t, x).

Thus we complete the proof of u1 > u2 in Q.

In order to give another comparison result which is stronger than Theorem 4.1 we will
prepare the following lemma which implies the continuous dependence of solutions upon initial
data under a certain condition.

Lemma 4.1. Assume that (ϕi, ℓi), i = 1, 2, satisfy (A.4), (A.5) and

ϕ1 ≥ ϕ2 (ϕ1 6≡ ϕ2) in I and ℓ1 > ℓ2.

For each i = 1, 2, let (ui, si) be a smooth solution of (P) with initial data (ϕi, ℓi). Then there
exist positive constants C1 and C2 such that

0 ≤ (s1(t)− s2(t)) +

∫ 1

0

(u1(t, x)− u2(t, x))dx ≤ C1

{
(ℓ1 − ℓ2) +

∫ 1

0

(ϕ1(x)− ϕ2(x))dx

}
eC2t

for all t ≥ 0.
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Proof. Let (u, s) be any smooth solution of (P). The following identity holds true:

d

dt

{
µ1

d1

∫ s(t)

0

u dx+
µ2

d2

∫ 1

s(t)

u dx+ s(t))

}

=− µ1ux(t, 0) + µ2ux(t, 1) +
µ1

d1

∫ s(t)

0

uf(u) dx+
µ2

d2

∫ 1

s(t)

ug(u) dx.

(4.5)

Put (u, s) = (ui, si), i = 1, 2, in (4.5) and subtract the resulting expressions; then

d

dt

{
µ1

d1

(∫ s1(t)

0

u1dx−
∫ s2(t)

0

u2dx

)
+
µ2

d2

(∫ 1

s1(t)

u1dx−
∫ 1

s2(t)

u2dx

)
+ (s1 − s2)(t)

}
=− µ1(u1,x(t, 0)− u2,x(t, 0)) + µ2(u1,x(t, 1)− u2,x(t, 1))

+
µ1

d1

(∫ s1(t)

0

u1f(u1)dx−
∫ s2(t)

0

u2f(u2)dx

)

+
µ2

d2

(∫ 1

s1(t)

u1g(u1)dx−
∫ 1

s2(t)

u2g(u2)dx

)
.

(4.6)

By Theorem 4.1

u1(t, x) > u2(t, x), (t, x) ∈ Q and s1(t) ≥ s2(t), t > 0 : (4.7)

so that
u1,x(t, 0)− u2,x(t, 0) > 0 and u1,x(t, 1)− u2,x(t, 1) < 0. (4.8)

We now define the following functional:

U(t) :=
µ1

d1

(∫ s1(t)

0

u1dx−
∫ s2(t)

0

u2dx

)
+
µ2

d2

(∫ 1

s1(t)

u1dx−
∫ 1

s2(t)

u2dx

)
+ s1(t)− s2(t)

≥µ1

d1

∫ s2(t)

0

(u1 − u2)(t, x)dx+
µ2

d2

∫ 1

s1(t)

(u1 − u2)(t, x)dx+ (s1(t)− s2(t)) > 0.

Here we have used (4.7), u1 ≥ 0 in S−
1 and u2 ≤ 0 in S+

2 . By (A.1) and (4.7)∣∣∣∣∣
∫ s1(t)

0

u1f(u1)dx−
∫ s2(t)

0

u2f(u2)dx

∣∣∣∣∣ ≤ L1

∫ s2(t)

0

(u1 − u2)dx+ L2(s1(t)− s2(t)) (4.9)

with some positive numbers L1 and L2. Similarly, by (A.2) and (4.7)∣∣∣∣∣
∫ 1

s1(t)

u1g(u1)dx−
∫ 1

s2(t)

u2g(u2)dx

∣∣∣∣∣ ≤ L3

∫ 1

s1(t)

(u1 − u2)dx+ L4(s1(t)− s2(t)) (4.10)

with some positive numbers L3 and L4. Owing to (4.8), (4.9) and (4.10), the integration of
(4.6) with respect to t gives us

U(t) ≤ U(0) + L5

∫ t

0

U(τ)dτ, t ≥ 0
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with a positive constant L5. Hence Gronwall’s inequality implies

U(t) ≤ U(0)eL5t, t ≥ 0. (4.11)

Since

U(t) ≥ min

{
µ1

d1
,
µ2

d2

}∫ 1

0

(u1 − u2)(x, t)dx+ (s1 − s2)(t)

and

U(0) ≤ max

{
µ1

d1
,
µ2

d2

}∫ 1

0

(ϕ1 − ϕ2)(x)dx+ (ℓ1 − ℓ2),

the assertion follows from (4.11).

Theorem 4.2. In additions to the assumptions of Theorem 4.1, assume that either (u1, s1)
or (u2, s2) is a smooth solution of (P). If ϕ1 ≥ ϕ2 in I and ℓ1 ≥ ℓ2, then

u1(t, x) ≥ u2(t, x), (t, x) ∈ Q and s1(t) ≥ s2(t), t ≥ 0.

Moreover, if ϕ1 6≡ ϕ2, then

u1(t, x) > u2(t, x), for (t, x) ∈ Q

and
s1(t) > s2(t) for t > 0 as long as s1(t) > 0 or s2(t) < 1.

Proof. We will prove this theorem when (u2, s2) is a smooth solution. Choose an increasing

sequence {ψn, ℓ̂n} such that

ψn ≤ ψn+1 ≤ ϕ2 ≤ ϕ1 and ℓ̂n < ℓ̂n+1 < ℓ2 ≤ ℓ1 for n ≥ 1

and
lim
n→∞

(ψn)
± = (ϕ2)

± in H1(I) and lim
n→∞

ℓ̂n = ℓ2.

Let (vn, hn) be a smooth solution of (P) with initial data (ψn, ℓ̂n). Since ψn ≤ ϕ1 in I and

ℓ̂n < ℓ1, Theorem 4.1 implies

u1(x, t) > vn(x, t), (x, t) ∈ Q and s1(t) ≥ hn(t), t > 0, (4.12)

for all n ≥ 1. On the other hand, Lemma 4.1 implies

lim
n→∞

hn(t) = s2(t) locally uniformly in t ≥ 0.

Hence letting n→ ∞ in (4.12) leads us to

s1(t) ≥ s2(t), t ≥ 0.

Snce u1(0, t) ≥ m1 = u2(t, 0), u1(t, s1(t)) = 0 ≥ u2(t, s1(t)) and u1(0, ·) = ϕ1 ≥ ϕ2 = u2(0, ·),
it follows from the comparison theorem for parabolic equations that u1(t, x) ≥ u2(t, x) for
(t, x) ∈ S−

1 . Similarly, it is also possible to show u1(t, x) ≥ u2(t, x) for (t, x) ∈ S+
1 .

Finally we note that the last assertion is a consequence the strong maximum principle.

As an application of the comparison principle we will give the following result which provides
us important information on the dynamical behaviors of smooth solutions of (P).
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Theorem 4.3. Let (ϕ, ℓ) ∈ C([0, 1])× (0, 1) possess the following properties: ϕ ∈ C2((0, ℓ))∩
C2((ℓ, 1)) satisfies 

d1ϕxx + ϕf(ϕ) ≥ 0, ϕ ≥ 0 in (0, ℓ),

d2ϕxx + ϕg(ϕ) ≥ 0, ϕ ≤ 0 in (ℓ, 1),

ϕ(0) ≤ m1, ϕ(ℓ) = 0, ϕ(1) ≤ −m2,

0 ≤ −µ1 lim
x→ℓ−0

ϕx(x) + µ2 lim
x→ℓ+0

ϕx(x).

Then the smooth solution (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) of (P) with initial data (ϕ, ℓ) fulfills the following
properties:

(i) ut(t, ·;ϕ, ℓ) ≥ 0 in Q and ṡ(t) ≥ 0 for t ≥ 0. In particular, if (ϕ, ℓ) is not a solution of
(SP), then t 7→ u(t, ·;ϕ, ℓ) is strictly increasing in (0,∞) and t 7→ s(t;ϕ, ℓ) is strictly increasing
as long as ℓ ≤ s(t;ϕ, ℓ) < 1.

(ii) lim
t→∞

u±(t;ϕ, ℓ) = (u∗)± in H1(I) and lim
t→∞

s(t;ϕ, ℓ) = s∗, where (u∗, s∗) is a minimal

solution of (SP) in the class satisfying u∗ ≥ ϕ in I and s∗ ≥ ℓ.

Proof. Observe that (u2(t, x), s2(t)) := (ϕ(x), ℓ) is a subsolution of (P) with initial data (ϕ, ℓ).
Therefore, Theorem 4.2 implies

u(τ, ·;ϕ, ℓ) ≥ ϕ in I and s(τ ;ϕ, ℓ) ≥ ℓ (4.13)

for all τ ≥ 0. Here it should be noted

(u(t, ·;u(τ ;ϕ, ℓ), s(τ ;ϕ, ℓ)), s(t;u(τ ;ϕ, ℓ), s(τ ;ϕ, ℓ))) = (u(t+ τ ;ϕ, ℓ), s(t+ τ ;ϕ, ℓ))

for any t > 0 and τ > 0 by the uniqueness of solutions to (P). Hence it follows from (4.13) and
Theorem 4.2 that

u(t+ τ, ·;ϕ, ℓ) ≥ u(t, ·;ϕ, ℓ) in I and s(t+ τ ;ϕ, ℓ) ≥ s(t;ϕ, ℓ) (4.14)

for any t > 0 and τ > 0. This fact implies ut(t, ·;ϕ, ℓ) ≥ 0 in I and ṡ(t) ≥ 0 fot t > 0.
In particular, if (ϕ, ℓ) is not a stationary solution, then Theorem 4.2 enables us to see that

the former inequality of (4.14) is valid with ” ≥” replaced by ”>”. This fact shows the strictly
increasing property of u(t, ·, ϕ, ℓ) with respect to t. The same reasoning shows the strictly
increasing property of s(t;ϕ, ℓ) as long as ℓ ≤ s(t;ϕ, ℓ) < 1.

(ii) Since both u(t;ϕ, ℓ) and s(t;ϕ, ℓ) are uniformly bounded in t ≥ 0, the result of (i)
implies that the following limit exists;

lim
t→∞

(u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) = (u∗, s∗) (4.15)

with some (u∗, s∗) ∈ L∞(I) × Ī. If we recall Theorems 2.2 and 2.5, we see that (u∗, s∗) is a
solution of (SP) and that the convergence in (4.15) holds in the sense of Ω-topology.

It remains to show that (u∗, s∗) is minimal in the class of stationary solutions (ũ, s̃) satisfying
ũ ≥ ϕ and s̃ ≥ ℓ. Take any stationary solution (ũ, s̃) in the above class. The comparison
principle (The orem 4.2) assures

ũ ≥ u(t, ·;ϕ, ℓ) in I and s̃ ≥ s(t;ϕ, ℓ) (4.16)

for all t ≥ 0. Letting t→ ∞ in (4.16) and using (4.15) we get

ũ ≥ u∗ in I and s̃ ≥ s∗.

Thus we complete the proof.
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Remark 4.2. Assume that (ϕ, ℓ) satisfies the opposite relations in Theorem 4.3:
d1ϕxx + ϕf(ϕ) ≤ 0, ϕ ≥ 0 in (0, ℓ),

d2ϕxx + ϕg(ϕ) ≤ 0, ϕ ≤ 0 in (ℓ, 1),

ϕ(0) ≥ m1, ϕ(ℓ) = 0, ϕ(1) ≥ −m2,

0 ≥ −µ1 lim
x→ℓ−0

ϕx(x) + µ2 lim
x→ℓ+0

ϕx(x).

Then analogous conclusions as Theorem 4.3 hold true with obvious changes.

Corollary 4.1. Let (ϕ, ℓ) satisfy the assumptions of Theorem 4.3 and let (ϕ1, ℓ1) satisfy, in
addition to(A.4) and (A.5),

ϕ ≤ ϕ1 ≤ u∗ in I and ℓ ≤ ℓ1 ≤ s∗,

where (u∗, s∗) is a stationary solution given in Theorem 4.2. Then

lim
t→∞

(u(t, ·;ϕ1, ℓ1), s(t;ϕ1, ℓ1)) = (u∗, s∗) in the sense of Ω-topology.

Proof. By Theorem 4.2

u(t, ·;ϕ, ℓ) ≤ u(t, ·;ϕ1, ℓ1) ≤ u∗ in I and s(t;ϕ, ℓ) ≤ s(t;ϕ1, ℓ1) ≤ s∗

for all t ≥ 0. Hence letting t → ∞ in the above relations one can get the conclusion with use
of Theorem 4.3.

In what follows, we will concentrate ourselves on the study of (P) with m1 = m2 = 0. In
this case, the free boundary may arrive at one of the fixed boundaries in a finite time. We will
investigate when this phenomenon happens for a smooth solution of (P). For instance, if we
assume s(T ∗) = 1 with some T ∗ > 0, then s∗ = 1 and (SP-0) becomes{

d1u
∗
xx + u∗f(u∗) = 0, u∗ ≥ 0 in (0, 1),

u∗(0) = u∗(1) = 0.
(4.17)

By the monotone method for elliptic boundary value problems (see Sattinger [12]) , it is possible
to show that (4.17) has a minimal positive solution u∗1 provided that f(0) > d1π

2. We will give
a sufficient condition on (ϕ, ℓ) such that the smooth solution (u, s) of (P) with initial data (ϕ, ℓ)
satisfies

s(T ∗) = 1 at a finite time T ∗

and
lim
t→∞

u(t) = u∗1 in H1
0 (I).

Proposition 4.1. In addition to (A.1) and (A.2), assume that f and g satisfy f(0) >
π2d1, g(0) > 0 and that g is nondecreasing near u = 0. Let ℓ∗ ∈ (0, 1) satisfy

ℓ∗ > max

{
π

√
d1
f(0)

, 1− π

√
d2
g(0)

}
(4.18)

and define ϕ∗ by

ϕ∗(x) =

ε1 sin
πx

ℓ∗
for 0 ≤ x ≤ ℓ∗,

−ε2 sin
π(1− x)

1− ℓ∗
for ℓ∗ ≤ x ≤ 1,

(4.19)
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where ε1 > 0 and ε2 > 0 are sufficiently small numbers such that ε1µ1/ℓ
∗ ≥ ε2µ2/(1 −

ℓ∗). Suppose that (ϕ, ℓ) satisfies ϕ∗ ≤ ϕ ≤ u∗1 in I and ℓ∗ ≤ ℓ. Then the smooth solution
(u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) of (P) with initial data (ϕ, ℓ) satisfies

lim
t→∞

(u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) = (u∗1, 1) in the sense of Ω-topology, (4.20)

where u∗1 is a minimal positive solution of (4.17). Moreover, there exists a positive number T ∗

such that
s(T ∗;ϕ, ℓ) = 1 and ℓ∗ ≤ s(t;ϕ, ℓ) < 1 for 0 ≤ t < T ∗. (4.21)

Proof. We will show this proposition by dividing its proof into several steps.

Step 1. In this step we will verify that (ϕ∗, ℓ∗) fulfills the assumptions of Theorem 4.3
provided that ε1 and ε2 satisfy suitable conditions. Note that

d1ϕ
∗
xx + ϕ∗f(ϕ∗) = ε1 sin

πx

ℓ∗

{
−
( π
ℓ∗

)2
d1 + f

(
ε1 sin

πx

ℓ∗

)}
≥ 0, ϕ∗ ≥ 0 (4.22)

for 0 ≤ x ≤ ℓ∗ if min0≤u≤ε1 f(u) ≥ (π/ℓ∗)2d1. Since ℓ∗ > π
√
d1/f(0) by (4.18), we see that

(4.22) holds true if ε1 > 0 is sufficiently small. Moreover, by (4.19)

d2ϕ
∗
xx + ϕ∗g(ϕ∗) = ε2 sin

π(1− x)

1− ℓ∗

{(
π

1− ℓ∗

)2

d2 − g

(
−ε2 sin

π(1− x)

1− ℓ∗

)}
.

By (4.18), 1−ℓ∗ < π
√
d2/g(0) and g(u) is nondecresing near u = 0. Therefore, (π/(1−ℓ∗))2d2 ≥

max−ε2≤u≤0 g(u) = g(0) if ε2 > 0 is sufficiently small. Hence for such ε2

d2ϕ
∗
xx + ϕ∗g(ϕ∗) ≥ 0, ϕ∗ ≤ 0 for ℓ∗ ≤ x ≤ 1. (4.23)

Finally,

−µ1ϕ
∗
x(ℓ

∗ − 0) + µ2ϕ
∗
x(ℓ+ 0) = π

(
µ1ε1
ℓ∗

− µ2ε2
1− ℓ∗

)
≥ 0 (4.24)

from the assumption on εi (i = 1, 2). It follows from (4.19) that ϕ∗(0) = ϕ∗(ℓ∗) = ϕ∗(1) = 0.
Thus we have verified that (ϕ∗, ℓ∗) fulfills the assumptions of Theorem 4.3.

Step 2. We will show (4.20). From the result of Step 1, Theorem 4.3 implies

lim
t→∞

(u(t, ·;ϕ∗, ℓ∗), s(t;ϕ∗, ℓ∗)) = (u∗, s∗) in the sense of Ω- topology (4.25)

with a suitable solution (u∗, s∗) of (SP-0) satisfying u∗ ≥ ϕ∗ in I and s∗ ≥ ℓ∗. We will show
s∗ = 1 by contradiction. Assume 0 < s∗ < 1. Then u∗ satisfies{

d2u
∗
xx + u∗g(u∗) = 0, u∗ ≤ 0 for s∗ ≤ x ≤ 1,

u∗(s∗) = u∗(1) = 0.

Taking L2(s∗, 1)-inner product of the above first equation with u∗ we see

d2

∫ 1

s∗
(u∗x)

2dx =

∫ 1

s∗
(u∗)2g(u∗)dx ≤ g(0)

∫ 1

s∗
(u∗)2dx. (4.26)

because |u∗(x)| ≤ ε2 with small ε2 > 0 for ℓ∗ ≤ x ≤ 1 and g(u) is nondecreasing near u = 0.
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Here we consider the following eigenvalue problem{
−d2wxx = λw in (s∗, 1),

w(s∗) = w(1) = 0.
(4.27)

Note that the least eigenvalue of (4.27) is d2π
2/(1− s∗)2. Therefore, the variational character-

ization of the least eigenvalue provides us

d2

∫ 1

s∗
(u∗x)

2dx ≥ d2π
2

(1− s∗)2

∫ 1

s∗
(u∗)2dx.

This fact together with (4.26) gives(
d2π

2

(1− s∗)2
− g(0)

)∫ 1

s∗
(u∗)2dx ≤ 0. (4.28)

Recall that (4.18) implies

d2π
2

(1− s∗)2
− g(0) ≥ d2π

2

(1− ℓ∗)2
− g(0) > 0.

Hence we get u∗ ≡ 0 in [s∗, 1] from (4.28).
On the other hand, u∗ satisfies{

d1u
∗
xx + u∗f(u∗) = 0, u∗ ≥ 0 in (0, s∗),

u∗(0) = u∗(s∗) = 0.
(4.29)

Recall here that u∗ ≥ ϕ∗ in (0, ℓ∗). This fact implies u∗ > 0 in (0, s∗) because it satisfies (4.29).
Therefore, u∗x(s

∗ − 0) < 0; so that

0 = −µ1u
∗
x(s

∗ − 0) + µ2u
∗
x(s

∗ + 0) = −µ1u
∗
x(s

∗ − 0) > 0.

Since this is a contradiction, it must be s∗ = 1. Thus we have proved that u∗ is a solution of
(4.17).

Finally, by virtue of Theorem 4.3, it should be noted that u∗ is identical with the minimal
positive solution v∗1 of (4.17).

Step3. Since we have shown (4.20) for (ϕ∗, ℓ∗), we next consider the case when (ϕ, ℓ) satisfies
ϕ∗ ≤ ϕ ≤ u∗1 in I and ℓ∗ ≤ ℓ. It is seen from the comparison principle (Theorem 4.2 that

u(t, ·;ϕ∗, ℓ∗) ≤ u(t, ·;ϕ, ℓ) ≤ u∗1 in I and s(t;ϕ∗, ℓ∗) ≤ s(t;ϕ, ℓ)

for all t ≥ 0. Then letting t→ ∞ in the above relations we obtain (4.20) for (ϕ, ℓ).

Step 4. We will show (4.21) by contradiction. Assume

(ℓ∗ ≤)s(t;ϕ, ℓ) < 1 for all t ≥ 0.

For the sake of simplicity, we write (u(t, x), s(t)) in place of (u(t, x;ϕ, ℓ), s(t;ϕ, ℓ)). We use the
following identity:

d

dt

{
µ1

d1

∫ s(t)

0

xudx

}
=
µ1

d1

∫ s(t)

0

xutdx = µ1

∫ s(t)

0

xuxxdx+
µ1

d1

∫ s(t)

0

xuf(u)dx

= µ1s(t)ux(t, s(t)− 0) +
µ1

d1

∫ s(t)

0

xuf(u)dx.

(4.30)
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Similarly,

d

dt

{
µ2

d2

∫ 1

s(t)

xudx

}
= µ2ux(t, 1)− µ2s(t)ux(t, s(t) + 0) +

µ2

d2

∫ 1

s(t)

xug(u)dx. (4.31)

Owing to the Stefan condition (1.7), addition of (4.30) and (4.31) leads us to

d

dt

{
µ1

d1

∫ s(t)

0

xudx+
µ2

d2

∫ 1

s(t)

xudx+
1

2
s(t)2

}

=µ2ux(t, 1) +
µ1

d1

∫ s(t)

0

xuf(u)dx+
µ2

d2

∫ 1

s(t)

xug(u)dx.

(4.32)

In view of ux(t, 1) > 0, integrating (4.32) over (0, t) we get

µ1

d1

∫ s(t)

0

xudx+
µ2

d2

∫ 1

s(t)

xudx+
1

2
s(t)2 >

µ1

d1

∫ ℓ

0

xϕdx+
µ2

d2

∫ 1

ℓ

xϕdx+
ℓ2

2

+

∫ t

0

{
µ1

d1

∫ s(τ)

0

xuf(u)dx+
µ2

d2

∫ 1

s(τ)

xug(u)dx

}
dτ.

(4.33)

Note ∣∣∣∣∣
∫ 1

s(t)

xug(u)dx

∣∣∣∣∣ ≤ N max
−N≤u≤0

|g(u)|(1− s(t)) → 0 as t→ ∞

(by Theorem 2.3) and ∫ s(t)

0

xuf(u)dx→
∫ 1

0

xu∗1f(u
∗
1)dx as t→ ∞.

Here u∗1 is a positive solution of (4.17); so that∫ 1

0

xu∗1f(u
∗
1)dx = −d1

∫ 1

0

x(u∗1)xxdx = −d1 [x(u∗1)x]
1
0 + d1

∫ 1

0

(u∗1)xdx = −d1u∗x(1) := c0d1 > 0.

Therefore, there exists a large number T1 > 0 such that

µ1

d1

∫ s(t)

0

xuf(u)dx+
µ2

d2

∫ 1

s(t)

xug(u)dx ≥ µ1c0
2

for all t ≥ T1.

Hence it follows from (4.33) that

µ1

d1

∫ s(t)

0

xuf(u)dx+
µ2

d2

∫ 1

s(t)

xug(u)dx+
s(t)2

2
≥ µ1c0

2
(t− T1) + C1 (4.34)

with some C1. Since the first and second terms in the left-hand side of (4.34) are uniformly
bounded for all t ≥ 0, (4.34) implies s(t) → ∞ as t → ∞, which is a contradiction. So s(t)
must arrive at x = 1 in a finite time. This fact implies (4.21).
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5 Stationary problem

We will give complete information on the structure of solutions of (SP). For this purpose, we
introduce the following auxiliary problem: for any given ξ ∈ (0, 1), consider

(AP)


d1vxx + vf(v) = 0, v > 0 in (0, ξ),

d2vxx + vg(v) = 0, v < 0 in (ξ, 1),

v(0) = m1, v(ξ) = 0, v(1) = −m2.

Let v(x; ξ) be a solution of (AP) (if it exists). Our strategy for solving (SP) is to seek an
appropriate number ξ ∈ (0, 1) such that v(·, ξ) satisfies the last equation of (SP); that is,

−µ1vx(ξ − 0; ξ) + µ2vx(ξ + 0; ξ) = 0. (5.1)

For the sake of simplicity, we will study (AP) under the following stronger conditions than
(A.1) and (A.2):

(A.1)∗ f is locally Lipschitz continuous in [0,∞), monotone decreasing in [0, 1] and satisfies

f(u) > 0 for u ∈ [0, 1), f(1) = 0, f(u) < 0 for u ∈ (0,∞).

(A.2)∗ As a function of u ∈ [0,∞), g(−u) has the same properties as f in (A.1)∗.

Case m1 > 0 and m2 > 0

As the first step to handle (AP) we study the following boundary value problem{
dvxx + vf(v) = 0, v > 0 in (0, ξ),

v(0) = m, v(ξ) = 0,
(5.2)

where ξ > 0 is any given number, d and m are positive numbers and f is a function satisfying
(A-1)∗. The phase plane analysis is available to solve (5.2).

Consider the following initial value problem for the second-order ordinary differential equa-
tion {

dw′′ + wf(w) = 0, x > 0,

w(0) = m, w′(0) = p ∈ R.
(5.3)

Let w(x; p) is the solution of (5.3). Then it satisfies

dw′(x)2

2
+ F (w(x)) =

dp2

2
+ F (m), (5.4)

where F (w) =

∫ w

0

uf(u)du. For p ∈ R, define

X(p) = inf{x > 0 : w(x; p) = 0}. (5.5)

If p ≤ 0, then it follows from (5.4) that√
d

2

dw

dx
= −

(
dp2

2
+ F (m)− F (w)

)1/2

.
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In view of (5.5), one can get from the above relation

X(p) =

√
d

2

∫ m

0

dw√
dp2/2 + F (m)− F (w)

for p ≤ 0. (5.6)

In order to study (5.3) for p ≥ 0, define p∗ > 0 by

dp2∗
2

+ F (m) = F (1).

For 0 ≤ p < p∗, the phase plane analysis of (5.3) gives

X(p) =
√
2d

∫ wp

0

dw√
F (wp)− F (w)

−
√
d

2

∫ m

0

dw√
dp2/2 + F (m)− F (w)

, (5.7)

where wp > 0 is a positive number satisfying F (wp) = dp2/2+F (m). Here, by virtue of (A¿1)∗,
one can prove that the first term in the right-hand side of (5.7) is strictly increasing with respect
to p (see the corresponding arguments in case m1 = m2 = 0). Therefore, it follows from (5.6)
and (5.7) that p 7→ X(p) is continuous and strictly increasing in (−∞, p∗). Moreover, it is
possible to see

lim
p→−∞

X(p) = 0, X(0) =

√
d

2

∫ m

0

dw√
F (m)− F (w)

:= Λ, lim
p→p∗

X(p) = +∞. (5.8)

One can solve (5.2) by a shooting method. Indeed, it is sufficient to find p satisfyingX(p) = ξ
in order to solve (5.2). By virtue of the strictly increasing property of X(p) and (5.8), for every
ξ > 0 there exists a unique p(ξ) ∈ (−∞, p∗) such that

X(p(ξ)) = ξ. (5.9)

This fact implies the uniqueness of a solution v(x; ξ) of (5.2) and it is represented in terms of
w(x; p) as follows:

v(x; ξ) = w(x; p(ξ)).

Here we should note from (5.9) that p(ξ) is continuous and strictly increasing, p(ξ) < 0 for
ξ < Λ, p(ξ) > 0 for ξ > Λ and possesses the following properties:

lim
ξ→0

p(ξ) = −∞, p(Λ) = 0, lim
ξ→∞

p(ξ) = p∗.

Our next step is to study Φ(ξ) := −µvx(ξ − 0; ξ) in order to solve (5.1). Since v(x; ξ) =
w(x; p(ξ)), the phase plane analysis enables us to get

Φ(ξ) = −µwx(ξ; p(ξ)) = µ
√
p(ξ)2 + 2F (m)/d. (5.10)

Recalling the properties of p(ξ) we can show the following lemma.

Lemma 5.1. Define Φ(ξ) by Φ(ξ) := −µvx(ξ− 0; ξ) or, equivalently, by (5.10). Then Φ(ξ) is
a continuous function in (0,∞) such that it is strictly decreasing in (0,Λ) and strictly increasing
in (Λ,∞). Moreover,

lim
ξ→0

Φ(ξ) = +∞ and lim
ξ→∞

Φ(ξ) = µ
√

2F (1)/d.
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As the third step, we are will solve (AP). Since f and g satisfy (A.1)∗ and (A.2)∗, the
preceding considerations allow us to show that, for each ξ ∈ (0, 1), (AP) has a unique solution
v∗(x; ξ). Define

Φ1(ξ) = −µ1v
∗
x(ξ − 0; ξ) and Φ2(ξ) = −µ2v

∗
x(ξ + 0; ξ) (5.11)

Define Λi, i = 1, 2, by (5.8) with d and m replaced by di and mi, respectively (for Λ2 use
G(w) =

∫ w

0
vg(−v)dv un place of F (w)). Owing to Lemma 5.1, Φ1(ξ) attains its minimum at

ξ = Λ1 > 0 and is strictly decreasing in (0,Λ1) (resp. increasing in (Λ1,∞)). Moreover,

lim
ξ→0

Φ1(ξ) = +∞ and lim
ξ→∞

Φ1(ξ) = µ1

√
2F (1)/d1. (5.12)

Similarly, one can prove that Φ2(ξ) attains its minimum at ξ = 1 − Λ2 < 1 and is strictly
increasing in (1− Λ2, 1) (resp. decreasing in (−∞, 1− Λ2)). Moreover,

lim
ξ→1

Φ2(ξ) = +∞ and lim
ξ→−∞

Φ2(ξ) = µ2

√
2G(1)/d2. (5.13)

Here it should be noted that any solution (u∗, s∗) of (SP) can be obtained by looking for
s∗ ∈ (0, 1) such that (5.1) holds true for ξ = s∗. This is equivalent to find s∗ such that
Φ1(s

∗) = Φ2(s
∗). Once such s∗ is found, the solution u∗ is given by u∗(x) = v∗(x; s∗). On

account of (5.12) and (5.13), it can be seen that (SP) always has at least one solution.
We will summarize results concerning (AP) and (SP) in case m1 > 0 and m2 > 0.

Theorem 5.1. Assume (A.1)∗ and (A.2)∗ in place of (A.1) and (A.2). Then it holds that
the following properties hold true:

(i) For every ξ ∈ (0, 1), (AP) possesses a unique solution v∗(x; ξ).
(ii) If 0 < ξ1 < ξ2 < 1, then v∗(x; ξ1) < v∗(x; ξ2) in I.
(iii) (v∗(x; ξ), ξ) is a solution of (SP) if and only if ξ is a zero point of V (ξ) := Φ1(ξ)−Φ2(ξ),

where Φi, i = 1, 2 are defined by (5.11).
(iv) (SP) admits a maximal solution (ū, s̄) := (v∗(·; s̄), s̄) and a minimal solution (u, s) :=

(v∗(·; s), s) such that any solution (u∗, s∗) of (SP) satisfies

s ≤ s∗ ≤ s̄ and u ≤ u∗ ≤ ū in I.

Here s̄ is the largest zero point of V and s is the smallest zero point of V in (0, 1).

Remark 5.1. When (A.1) and (A.2) are imposed on f and g, the uniqueness of solutions to
(AP) does not hold any longer. Therefore, the assertions corresponding to Theorem 5.1 become
more complicate.

Case m1 = 0 and m2 = 0

The analysis in case m1 = 0 (resp. m2 = 0) is slightly different from the case m1 > 0 (resp.
m2 > 0). We will give the idea and method for the analysis of the case m1 = m2 = 0 in detail.

When we discuss (SP-0), (u∗, s∗) = (0, ξ) for any ξ ∈ [0, 1] always satisfies (SP-0). Such a
solution is called a trivial solution. Consider{

dvxx + vf(v) = 0, v > 0 in (0, ξ),

v(0) = v(ξ) = 0,
(5.14)
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in place of (5.2). In order to solve (5.14) we also employ the phase plane method and study
the following initial value problem{

dw′′ + wf(w) = 0, x > 0,

w(0) = 0, w′(0) = p > 0.
(5.15)

When w(x; p) denotes the solution of (5.15), it satisfies

d

2
w′(x; p)2 + F (w(x; p)) =

dp2

2
. (5.16)

Set p∗ =
√

2F (1)/d and, for 0 < p < p∗, defnie X(p) by (5.5). On account of (5.16) the phase
plane analysis enables us to derive

X(p) =
√
2d

∫ wp

0

dw√
F (wp)− F (w)

,

where wp ∈ (0, 1) is defined by F (wp) = dp2/2. Observe that

X(p) =
√
2d

∫ 1

0

dv√
F ∗(v; p)

with F ∗(v; p) =

∫ 1

v

σf(wpσ)dσ. (5.17)

Since f(u) is deceasing, we see from (5.17) that p 7→ X(p) is a continuous and strictly increasing
function such that

lim
p→0

X(p) = π
√
d/f(0) and lim

p→p∗
X(p) = +∞.

These properties allow us to show that X(p) = ξ has a (unique) solution p = p(ξ) if and
only if ξ > π

√
d/f(0). Therefore, if ξ ∈ (0, π

√
d/f(0)], then (5.14) has no solution, while, if

ξ ∈ (π
√
d/f(0),∞), then (5.14) admits a unique solution v(x; ξ) = w(x; p(ξ)). When v(x; ξ)

exists, define Φ(ξ) = −µvx(ξ − 0; p(ξ)). Clearly,

Φ(ξ) = µvx(0; ξ) = µwx(0; p(ξ)) = µp(ξ) for ξ > π
√
d/f(0).

Then we can prove the following result.

Lemma 5.2. Define Φ(ξ) := −µvx(ξ−0; ξ). Then Φ(ξ) is a continuous and strictly increasing
function in ξ ∈ (π

√
d/f(0),∞) such that

lim
ξ→π

√
d/f(0)

Φ(ξ) = 0 and lim
ξ→∞

Φ(ξ) = µp∗.

Lemma 5.2 is very useful for the study of (SP-0). As a part of (AP) with m1 = m2 = 0,
consider {

d1vxx + vf(v) = 0, v > 0 in (0, ξ),

v(0) = v(ξ) = 0.
(5.18)

Set a = π
√
d1(0)/f(0). The preceding arguments show us that (5.18) has no solution in case

0 < ξ ≤ a, while it has a unique solution v∗(x; ξ), 0 ≤ x ≤ ξ, in case ξ > a. If we define

Φ1(ξ) = −µ1v
∗
x(ξ − 0; ξ) for ξ > a, (5.19)
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we can apply Lemma 5.2 to Φ1. Similarly, consider{
d2vxx + vg(v) = 0, v < 0 in (ξ, 1),

v(ξ) = v(1) = 0.
(5.20)

If we set b = π
√
d2/g(0), then we can prove that (5.20) has no solution in case 0 ≤ 1− ξ ≤ b,

while (5.20) has a unique solution v∗(x; ξ), ξ ≤ x ≤ 1, in case 1− ξ > b. When Φ2(ξ) is defined
by

Φ2(ξ) = −µ2v
∗
x(ξ + 0; ξ) for ξ < 1− b, (5.21)

it can be seen from Lemma 5.2 that Φ2(ξ) is continuous and strictly decreasing for ξ < 1 − b
and satisfies limξ→1−b Φ2(ξ) = 0.

We are ready to prove the following result on a set S of non-trivial solutions of (SP-0):

S := {(u∗, s∗) : u∗ 6≡ 0, (u∗, s∗) satisfies (SP-0)}.

Theorem 5.2. Assume (A.1)∗ and(A.2)∗ in place of (A.1) and (A.2). Set a = π
√
d1/f(0)

and b = π
√
d2/g(0). Then the following properties hold true.

(i) If a ≥ 1 and b ≥ 1, then (SP-0) admits no non-trivial solution.
(ii) If a < 1 and b ≥ 1, then

S = {(ū, 1)} with ū > 0 in I.

(iii) If a ≥ 1 and b < 1, then

S = {(u, 0)} with u < 0 in I.

(iv) If a < 1, b < 1 and a+ b > 1, then

S = {(u, 0), (ū, 1)} with u < 0 < ū in I.

(v) If a+ b < 1, then there exists a unique number c ∈ (0, 1) such that

S = {(u, 0), (ū, 1), (uc, c)}

with u < 0 < ū and u < uc < ū in I.

Proof. Consider (5.18) with ξ = 1; then one can see that (5.18) with ξ = 1 admits a unique
positive solution if and only if a < 1. This fact implies that (SP-0) admits a semi-trivial solution
of the form (ū, 1) with ū > 0 in I if and only if a < 1. Similarly, it follows from (5.20) withξ = 0
that (SP-0) admits a semi-trvial solution (u, 0) with u < 0 in I if and only if b < 1.

In order to find another non-trivial solution, we have to find ξ = s∗ satisfying Φ1(s
∗) =

Φ2(s
∗). It is easy to show that such s∗ exists (uniquely) if and only if a < 1 − b from basic

properties of Φi, i = 1, 2 (see Lemma 5.2).

6 Asymptotic behaviors

We will study stability properties of solutions of (SP) or (P-0) in connection with large-time
behaviors of smooth solutions of (P). The analysis can be carried out with use of the comparison
principle.

33



Case m1 > 0 and m2 > 0

The first result is concerned with the stability and instability of stationary solutions given
in Theorem 5.1 for the case m1 > 0 and m2 > 0. Hereafter we use the following notation for
(ui, si) ∈ C(Ī)× Ī , i = 1, 2: (u1, s1) ≥ (u2.s2) means that u1 ≥ u2 in Ī and s1 ≥ s2.

Theorem 6.1. In addition to(A.1)∗, (A.2)∗, (A.3) - (A.5), assume m1 > 0 and m2 > 0.
Then the following properties hold true.

(i) The maximal stationary solution (ū, s̄) given in Theorem 5.1 is globally and asymptot-
ically stable from above in the sense that, if (ϕ, ℓ) ≥ (ū, s̄), then the smooth solution of (P)
satisfies (u(t; ·;ϕ, ℓ), s(t;ϕ, ℓ)) ≥ (ū, s̄) and

lim
t→∞

(u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) = (ū, s̄) in the sense of Ω-topology. (6.1)

(ii) The minimal stationary solution (u, s) given in Theorem 5.1 is globally and asymptoti-
cally stable from below; that is, the assertion of (i) remains true with “(ū, s̄)” and “≥ ” replaced
by “(u, s)” and “≤ ”, respectively.

(iii) Let (0 <) ξ1 < ξ2 (< 1) be two adjacent zero points of V and let v∗(·; ξi) be a solution
of (SP) with i = 1, 2. If (ϕ, ℓ) satisfies

(v∗(·; ξ1), ξ1) ≤ (ϕ, ℓ) ≤ (v∗(·; ξ2), ξ2), (6.2)

then
(v∗(·; ξ1), ξ1) ≤ (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) ≤ (v∗(·; ξ2), ξ2) (6.3)

for all t ≥ 0. Moreover, if V (ξ) > 0 for ξ ∈ (ξ1, ξ2) and (ϕ, ℓ) 6= (v∗(·; ξ1), ξ1), then

lim
t→∞

(u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) = (v∗(·; ξ2), ξ2) in the sense of Ω-topology, (6.4)

while, if V (ξ) < 0for ξ ∈ (ξ1, ξ2) and (ϕ, ℓ) 6= (v∗(·; ξ2), ξ2), then (6.4) holds true with “
(v∗(·; ξ2), ξ2) ” replaced by “ (v∗(·; ξ1), ξ1) ”

Proof. (i) Take any (ϕ, ℓ) such that (ϕ, ℓ) ≥ (ū, s̄). Theorem 4.2 assures

(u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) ≥ (ū, s̄) for all t ≥ 0. (6.5)

Using Theorem 2.2 and letting t→ ∞ along a suitable subsequence in (6.5) we get

(u∗, s∗) ≥ (ū, s̄),

where (u∗, s∗) is a stationary solution. Since (ū, s̄) is a maximal stationary solution, (u∗, s∗)
must be identical with (ū, s̄). This fact together with Theorem 2.2 implies (6.1).

The poof of (ii) is essentially the same as that of (i).
(iii) Since (ϕ, ℓ) satisfies (6.2), it is easy to see (6.3) by the comparison principle (Theorem

4.2). Assume V > 0 in (ξ1, ξ2) and take any ξ ∈ (ξ1, ξ2). Since (u2(t, ·), s2(t)) ≡ (v∗(·; ξ), ξ) is a
subsolution, Theorem 4.3 implies the strong increasing property of t 7→ (u(t, ·; v∗(ξ), ξ), s(t; v∗(ξ), ξ))
and

lim
t→∞

(u(t, ·; v∗(ξ), ξ), s(t; v∗(ξ), ξ)) = (u∗, s∗),

where (u∗, s∗) is minimal stationary solution in the class satisfying (u∗, s∗) ≥ (v∗(ξ), ξ). Since
(u∗, s∗) ≤ (v∗(ξ2), ξ2), the above convergence assures (u∗, s∗) = (v∗(ξ2), ξ2); so that

lim
t→∞

(u(t, ·; v∗(ξ), ξ), s(t; v∗(ξ), ξ)) = (v∗(·; ξ2), ξ2) (6.6)
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and the above convergence holds in the sense of Ω-topology. If (ϕ, ℓ) satisfies

(v∗(·; ξ), ξ) ≤ (ϕ, ℓ) ≤ (v∗(·; ξ2), ξ2),

Theorem 4.2 shows

(u(t, ·; v∗(ξ), ξ), s(t; v∗(ξ), ξ)) ≤ (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) ≤ (v(·; ξ2), ξ2) (6.7)

for all t ≥ 0. Hence letting t→ ∞ in (6.7) and using (6.6) one can get (6.4).
If (ϕ, ℓ) 6= (v∗(ξ1), ξ1), then the strong maximum principle for parabolic equations implies

s(t;ϕ, ℓ) > ξ1 for every t > 0 and, therefore, u(t, ·;ϕ, ℓ) > v∗(·, ξ1) for every t > 0. Moreover,
Hopf’s boundary lemma yields ux(t, 0;ϕ, ℓ) > v∗x(0; ξ1) and ux((t, 1;ϕ, ℓ) < v∗x(1; ξ1) for every
t > 0. In this situation, we simply write (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ) � (v∗(·; ξ1), ξ1). So for any fixed
t0 > 0, it is possible to choose ξo ∈ (ξ1, ξ2) such that

(u(t0, ·;ϕ, ℓ), s(t0;ϕ, ℓ)) > (v∗(·; ξ0), ξ0).

Hence Theorem 4.2 implies

(u(t+ t0, ·;ϕ, ℓ), s(t+ t0;ϕ, ℓ)) > (u(t, ·; v∗(ξ0), ξ0), s(t; v∗(ξ0), ξ0) for all t > 0

like (6.7). Then repeating the preceding arguments one can derive (6.4) from (6.6).

Case m1 = m2 = 0

Our first result on the asymptotic behavior of smooth solutions of (P) is concerned with the
case a := π

√
d1/f(0) ≥ 1 and b := π

√
d2/g(0) ≥ 1.

Proposition 6.1. In addition to (A.1)∗ and (A.2)∗, assume a ≥ 1 and b ≥ 1. Then for every
(ϕ, ℓ), the smooth solution (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) satisfies

lim
t→∞

u(t, ·;ϕ, ℓ) = 0 uniformly in Ī . (6.8)

Moreover, if a > 1 and b > 1, then it holds that

sup
x∈Ī

|u(t, x : ϕ, ℓ)| = O(e−γt) as t→ ∞ (6.9)

with some γ > 0 and
lim s(t;ϕ, ℓ) = s∗ (6.10)

with some s∗ ∈ [0, 1].

Proof. Theorem 2.5 shows that (SP-0) has no non-trivial solution; that is, ω(ϕ, ℓ) ⊂ {(0, ξ) : ξ ∈
[0, 1]} for every (ϕ, ℓ). This fact implies (6.8).

We will derive (6.9) in case a > 1 and b > 1. Set v(t, x) = α(t) sinπx with α(t) > 0.; then

vt − d1vxx − vf(v) = sinπx{α̇(t) + d1π
2α(t)− α(t)f(α(t) sinπx)}

≥ sinπx{α̇(t) + (d1π
2 − f(0))α(t)}.

If we take α(t) = α0e
−α∗t with α∗ = (a2 − 1)f(0) > 0, then

vt − d1vxx − vf(v) ≥ 0 for (t, x) ∈ [0,∞)× I.
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Therefore, if α0 is sufficiently large such that α0 sinπx ≥ ϕ in I, the comparison principle for
parabolic equations gives

u(t, x;ϕ, ℓ) ≤ v(t, x) = α0e
−α∗t sinπx, (t, x) ∈ [0,∞)× I. (6.11)

Similarly, it is also possible to prove

u(t, x;ϕ, ℓ) ≥ −β0e−β∗t sinπx, (t, x) ∈ [0,∞)× I (6.12)

with some β0 > 0 and β∗ = (b2 − 1)g(0) > 0. Then (6.9) comes from (6.11) and (6.12).
In order to show (6.10) we assume

0 < s(t;ϕ, ℓ) < 1 for all t ≥ 0

because there is nothing left to prove if s(t;ϕ, ℓ) reaches x = 0 or x = 1 in a finite time. We
will employ (4.32). Since u(t, 1;ϕ, ℓ) = 0 for t ≥ 0, it follows from (6.12) that

0 < ux(t, 1;ϕ, ℓ) ≤ β0πe
−β∗t for t ≥ 0. (6.13)

Owing to (6.11), (6.12) and (6.13), all terms in the right-hand side of (4.32) are integrable
with respect to t over (0,∞). Therefore, (4.32) allows us to conclude that s(t) is convergent as
t→ ∞. Thus we have shown (6.10).

Our next result is concerned with the case a < 1, for which Proposition 4.1 asserts the
stability of (ū, 1) in the following manner.

Proposition 6.2. Assume a < 1 and, for ℓ∗ ∈ (0, 1) satisfying ℓ∗ > max{a, 1− b}, define ϕ∗
by

ϕ∗(x) =

ε1 sin
πx

ℓ∗
for 0 ≤ x ≤ ℓ∗,

−ε2 sin
π(1− x)

1− ℓ∗
for ℓ∗ ≤ x ≤ 1,

(6.14)

where ε1 and ε2 are small numbers satisfying f(ε1) ≥ d1(π/ℓ
∗)2 and ε1µ1/ℓ

∗ ≥ ε2µ2/(1− ℓ∗).
Suppose that (ϕ, ℓ) ≥ (ϕ∗, ℓ∗). Then the smooth solution (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) satisfies

lim
t→∞

(u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) = (ū, 1) in the sense of Ω-topology, (6.15)

where (ū, 1) is a (positive) semi-trivial stationary solution given in Theorem 5.2. Moreover,
there exists a positive number T ∗ such that s(t;ϕ, ℓ) reaches the fixed boundary x = 1 at t = T ∗.

Remark 6.1. Assume b < 1. One can derive analogous stability properties of (u, 0) in the
same way as p Proposition 6.2. For ℓ∗ ∈ (0, 1) satisfying ℓ∗ < min{a, 1− b} define ϕ∗ by (6.14)
with “ ϕ∗ ” and “ ℓ∗ ” replaced by “ ϕ∗ ” and “ ℓ∗ ”, respectively. Here ε1 and ε2 are small
numbers such that g(−ε2) ≥ d2(π/(1 − ℓ∗))

2 and ε2µ2/(1 − ℓ∗) ≥ ε1µ1/ℓ∗. If (ϕ, ℓ) satisfies
(ϕ, ℓ) ≤ (ϕ∗, ℓ∗), then the smooth solution of (P) satisfies

lim
t→∞

(u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) = (u, 0) in the sense of Ω-topology (6.16)

and
0 < s(t;ϕ, ℓ) ≤ ℓ∗ for t ∈ [0, T∗) and s(t) ≡ 0 for t ≥ T∗

with some T∗ <∞.

36



Proposition 6.2 and Remark 6.1 also provide us interesting information on the instability
(as a set) of trivial solutions {(0, ξ); a < ξ < 1} in case a < 1 and {(0, ξ); 0 < ξ < 1 − b} in
case b < 1. We can also discuss the asymptotic stability (as a set) of trivial solutions.

Proposition 6.3. (i) Assume a < 1. For any s0 ∈ (0, a), define

ϕη(x) =

η sin
πx

s0
for 0 ≤ x ≤ s0,

0 for s0 ≤ x ≤ 1.
(6.17)

Then there exists η1 > 0 such that, for every η ∈ (0, η1], the smooth solution of (P) with initial
data (ϕη, s0) satisfies

lim
t→∞

(u(t, ·;ϕη, s0), s(t;ϕη, s0)) = (0, s∗) in the sense of Ω-topology

with some s∗ ∈ [0, a).

(ii) Assume b < 1. For any s0 ∈ (1− b, 1) define

ψη(x) =

0 for 0 ≤ x ≤ s0,

−η sin π(1− x)

1− s0
for s0 ≤ x ≤ 1.

(6.18)

Then there exists η2 > 0 such that, for every η ∈ (0, η2], the smooth solution of (P) with initial
data (ψη, s0) satisfies

lim
t→∞

(u(t, ·;ψη, s0), s(t;ψη, s0)) = (0, s∗) in the sense of Ω-topology

with some s∗ ∈ (1− b, 1].

Proof. We will prove only (i) because the proof of (ii) is essentially the same. We will employ
the method in the work of [6].

In case a < 1, let s0 ∈ (0, a) be fixed and choose δ > 0 satisfying s0(1 + δ) < a. Set

s(t) = s0{1 + δ(1− e−αt)},

where α is a positive number to be determined later. Define ū(x) by

ū(t, x) = εe−βt sin

(
(π − γ)x

s(t)
+ γ

)
for t ≥ 0 and 0 ≤ x ≤ s(t),

where ε, β and γ ∈ (0, π) are also positive numbers to be determined later. If we put

X(t, x; γ) =
(π − γ)x

s(t)
+ γ,

then
∂X

∂x
=
π − γ

s(t)
> 0,

∂X

∂t
= − (π − γ)xṡ(t)

s(t)2
= − (π − γ)s0αδe

−αtx

s(t)2
< 0

and
γ = X(t, 0; γ) ≤ X(t, x; γ) ≤ X(t, s(t); γ) = π
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for t ≥ 0 and 0 ≤ x ≤ s(t). Then ū satisfies the following relations:

ūt = −βū− (π − γ)s0αδe
−αtx

s(t)2
· εe−βt cosX(t, x; γ),

ūxx = −
(
π − γ

s(t)

)2

ū.

Therefore,

ūt − d1ūxx − ūf(ū) =

{
d1

(
π − γ

s(t)2

)2

− β − f(ū)

}
ū

− (π − γ)s0αδe
−αtx

s(t)2
· εe−βt cosX(t, x; γ).

(6.19)

Here

d1

(
π − γ

s(t)2

)2

− β − f(ū) ≥ d1

(
π − γ

s0(1 + δ)

)2

− β − f(0). (6.20)

Siince s0(1 + δ) < a = π
√
d1/f(0), it is possible to choose sufficiently small β > 0 and γ > 0

satisfying

d1

(
π − γ

s0(1 + δ)

)2

> β + f(0). (6.21)

If π/2 ≤ X(x, t; γ) ≤ π, it is easily seen fron (6.19)-(6.21) that

ūt − d1ūxx − ūf(ū) ≥ 0. (6.22)

If γ ≤ X(x, t; γ) ≤ π/2, then

sinX(x, t; γ) ≥ sin γ and cosX(x, t; γ) ≤ cos γ.

So it follows from (6.19)-(6.21) that

ūt − d1ūxx − ūf(ū) ≥ εe−αt

[{
d1

(
π − γ

s0(1 + δ)

)2

− β − f(0)

}
sin γ − παδ cos γ

]
.

When we choose sufficiently small α satisfying{
d1

(
π − γ

s0(1 + δ)

)2

− β − f(0)

}
sin γ − παδ cos γ > 0, (6.23)

we have
ūt − d1ūxx − ūf(ū) ≥ 0 (6.24)

if γ ≤ X(t, x; γ) ≤ π/2.
We now define

u1(t, x) =

{
ū(t, x) for 0 ≤ x ≤ s(t),

0 for s(t) ≤ x ≤ 1.

Note

−µ1u1,x(t, s(t)− 0) + µ2u1,x(t, s(t) + 0) = µ1εe
−βt · π − γ

s(t)
≤ πµ1ε

s0
· e−βt
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and ṡ(t) = s0αδe
−αt. We choose sufficiently small α and ε such that

β ≥ α and πµ1ε ≤ s20αδ.

Then it is easy to see that

ṡ(t) ≥ −µ1u1,x(t, s(t)− 0) + µ2u1,x(t, s(t) + 0) for t ≥ 0. (6.25)

Owing to (6.22), (6.24) and (6.25) we have shown that (u1, s) is a supersolution.
We are ready to apply Theorem 4.2. Define

η1 = sup{η > 0; ϕη(x) ≤ u1(0, x) = ε sin

(
(π − γ)x

s0
+ γ

)
for 0 ≤ x ≤ s0}.

Since (ϕη, s0) ≤ (u1(0, ·), s0) for every η ≤ η1, Theroem 4.2 yields

(0, s0) ≤ (u(t, ·;ϕη, s0), s(t;ϕη, s0)) ≤ (u1(t, ·), s(t)) for all t ≥ 0.

Letting t→ ∞ in the above relation leads us to

lim
t→∞

u(t, ·;ϕη, s0) = 0 uniformly in I.

The convergence of s(t;ϕη, s0) as t→ ∞ can be proved in the same way as Proposition 6.1.

Finally we will give important and useful results on the stability or instability of a non-
trivial stationary solution (u∗, s∗) with 0 < s∗ < 1. By Theorem 5.2 such a solution exists if
and only if a+ b < 1. For each ξ ∈ (a, 1− b) let v∗(x; ξ) be a (unique) solution of (AP) whose
existence is assured by the results given in §5. We define

V (ξ) = Φ1(ξ)− Φ2(ξ),

where Φ1(ξ) = −µ1v
∗
x(ξ − 0; ξ) and Φ2(ξ) = −µ2v

∗
x(ξ + 0; ξ) (see also (5.19) and (5.21)).

Recalling the properties of Φ1 and Φ2 we know that V (ξ) has a unique zero point ξ = c.

Proposition 6.4. Assume a + b < 1 and V (ξ0) > 0 (resp. V (ξ0) < 0) for ξ0 ∈ (a, 1 − b).
Then the smooth solution of (P) with initial data (v∗(·; ξ0), ξ0) satisfies

lim
t→∞

(u(t, ·; v∗(ξ0), ξ0), s(t; v∗(ξ0), ξ0)) = (ū, 1) (resp. (u, 0)) (6.26)

in the sense of Ω-topology. Moreover, there exists a positive constant T ∗ such that s(T ∗; v∗(ξ0), ξ0) =
1 (resp. s(T ∗; v∗(ξ0), ξ0) = 0) and 0 < s(t; v∗(ξ0), ξ0) < 1 for 0 ≤ t < T ∗.

Proof. We will prove this proposition in case V (ξ0) > 0. Since V (ξ) is strictly increasing, note
that (v(ξ0), ξ0) > (vc, c). It is easy to see that (v∗(·; ξ0), ξ0) satisfies the assumptions of Theorem
4.3. So this theorem implies that t 7→ (u(t, ·; v∗(ξ0), ξ0), s(t; v∗(ξ0), ξ0)) is increasing and that

lim
t→∞

(u(t, ·; v∗(ξ0), ξ0), s(t; v∗(ξ0), ξ0)) = (u∗, s∗) in the sense of Ω-topology,

where (u∗, s∗) is a minimal of (SP) in the class of (u∗, s∗) ≥ (v∗(ξ0), ξ0)(> (vc, c)). Then it
follows from Theorem 5.2 taht (u∗s∗) must be identical with (ū, 1). In order to show the last
assertion, it is sufficient to repeat the argument of Step 4 in the proof of Proposition 4.1.

Theorem 6.1 and Propositions 6.1-6.4 allow us to obtain the following theorem.
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Theorem 6.2. Assume (A.1∗), (A.2∗) and m1 = m2 = 0.

(i) Every semi-trivial stationary solution of the form (ū, 1) or (u, 0) is asymptotically stable
whenever it exists. Moreover, if the smooth solution (u, s) of (P) satisfies

lim
t→∞

(u(t, ·), s(t)) = (ū, 1) (resp. (u, 0)) in the sense of Ω-topology,

then there exists T ∗ > 0 such that s(T ∗) = 1 (resp. s(T ∗) = 0) and s(t) ∈ (0, 1) for 0 ≤ t < T ∗.

(ii) Assume a ≥ 1 and b ≥ 1. Then the set of trivial solutions {(0, ξ) : 0 ≤ ξ ≤ 1} is globally
asymptotically sable in the sense of Proposition 6.1.

(iii) Assume a < 1 and b ≥ 1. Then the set {(0, ξ) : a < ξ < 1} is unstable in the sense that, if
(ϕ, ℓ) ≥ (ϕ∗, ℓ∗), where (ϕ∗, ℓ∗) is defined by (6.14) with ℓ∗ ∈ (a, 1) as in Proposition 6.2, then
the smooth solution of (P) with initial data (ϕ, ℓ) satisfies

lim
t→∞

(u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) = (ū, 1) in the sense of Ω-topology. (6.27)

On the other hand, the set {(0, ξ); : 0 < ξ < a} is asymptotically stable (as a set) in the sense
that, if (ϕ, ℓ) ≤ (ϕη, s0), where ϕη is defined by (6.17) with s0 ∈ (0, a) as in (i) of Proposition
6.3, then

lim
t→∞

(u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) = (0, s∗) in the sense of Ω-topology (6.28)

with some s∗ ∈ [0, a).

(iv) Assume a ≥ 1 and b < 1. Then the set {(0, ξ) : 0 < ξ < 1 − b} is unstable in the sense
that , if (ϕ, ℓ) ≤ (ϕ∗, ℓ∗), where (ϕ∗, ℓ∗) is defined as in Remark 6.1 with ℓ∗ ∈ (0, 1 − b), then
the smooth solution of (P) with initial data (ϕ, ℓ) satisfies

lim
t→∞

(u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) = (u, 0) in the sense of Ω-topology. (6.29)

On the other hand, the set {(0, ξ) : 1 − b < ξ < 1} is asymptotically stable (as a set) in
the sense that, if (ϕ, ℓ) ≥ (−ψη, s0), where ψη is defined by (6.18) with s0 ∈ (1 − b, 1) as in
(ii) of Proposition 6.3, then the smooth solution (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) satisfies (6.28) with “s∗”
replaced by “s∗ ∈ (1− b, 1]”.

(v) Assume a < 1, b < 1 and a+ b ≥ 1. Then the set {(0, ξ) : 0 < ξ < 1− b or a < ξ < 1} is
unstable in the sense as stated in (iii) and (iv). On the other hand, the set {(0, ξ) : 1−b < ξ < a}
is asymptotically stable in the sense that, if (−ψη, s1) ≤ (ϕ, ℓ) ≤ (ψη, s2) with s1 < s2, where
ψη is defined by (6.18) with s0 replaced by s1 ∈ (1 − b, a) and ϕη is defined by (6.17) with s0
replaced by s2 ∈ (1− b, a), then (6.28) holds true with some s∗ ∈ (1− b, a).

(vi) Assume a + b < 1. Then the set {(, ξ) : 0 < ξ < 1 − b or a < ξ < 1} is unstable in the
sense as stated in (iii) and (iv). Moreover, (vc, c) is unstable in the sense that, if (ϕ, ℓ) � (vc, c)
(resp. (ϕ, ℓ) � (vc, c)), the smooth solution (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) of (P) satisfies (6.27)(resp.
(6.29)).

7 Some remarks

We will consider a similar free boundary problem for (1.1) and (1.3) with the Dirichlet conditions
on the fixed boundaries in (1.2) replaced by the homogeneous Neumann conditions

u1,x(t, 0) = u2,x(t, L) = 0 for t > 0.

40



Then it is possible to rewrite the corresponding free boundary problem in the following form:

(P−N)



ut = d1uxx + uf(u) for (t, x) ∈ S−,

ut = d2uxx + ug(u) for (t, x) ∈ S+,

ux(t, 0) = ux(t, 1) = 0 for t ∈ {τ > 0 : 0 < s(τ) < 1},
u(t, s(t)) = 0 for t > 0,

ṡ(t) = −µ1ux(t, s(t)− 0) + µ2ux(t, s(t) + 0) for t ∈ {τ > 0 : 0 < s(τ) < 1},
u(0, x) = ϕ(x) for 0 ≤ x ≤ 1,

s(0) = ℓ.

Here we assume (A.1)-(A.4) and
(A.5)∗ ϕ ∈ C1(I) satisfies ϕ(ℓ) = 0, ϕx(0) = ϕx(1) = 0 and (ℓ− x)ϕ(x) ≥ 0 for x ∈ I.

On the existence of a smooth solution (u, s) for (P-N), we can prove the same result as
Theorem 2.3. So the free boundary x = s(t) may reach the fixed boundary x = 0 or x = 1 at a
finite time T ∗ > 0. As in the case m1 = m2 = 0 for (P), we will continue to solve (P-N) after
t = T ∗. Set s(t) ≡ 1 (resp. s(t) ≡ 0) if s(T ∗) = 1 (resp. s(T ∗) = 0) and solve the standard
boundary value problem for ut = d1uxx + uf(u) (resp. ut = d2uxx + ug(u)) with boundary
conditions

ux(t, 0) = u(t, 1) = 0 (resp. u(t, 0) = ux(t, 1) = 0).

Therefore, the global existence of a unique smooth solution to (P-N) can be stated in the
following form:

Theorem 7.1. Under assumptions (A.1)-(A.4) and (A.5)∗, there exists a unique solution
(u, s) ∈ C(Q̄)× C[0,∞) with the following properties:

(i) (u, s) satisfies initial conditions in (P-N) and

ux(t, 0) = 0 for t ∈ {τ > 0 : 0 < s(τ) ≤ 1},
ux(t, 1) = 0 for t ∈ {τ > 0 : 0 ≤ s(τ) < 1}.

(ii) ṡ ∈ L3(0,∞) and s satisfies one of the following conditions; 0 < s(t) < 1 for all t > 0,
s(t) = 0 for all t ≥ T ∗ or s(t) = 1 for all t ≥ T ∗ with some T ∗ ∈ (0,∞).

(iii) (u, s) satisfies

0 ≤ u ≤M := max{1, sup
0≤x≤ℓ

ϕ(x)} in S−,

0 ≥ u ≥ −N := min{−1, inf
ℓ≤x≤1

ϕ(x)} in S+.

(iv) u± ∈ C([0,∞); H1(I)).

(v) (u+)x ∈ L∞(S−
δ,∞), (u−)x ∈ L∞(S+

δ,∞) and ṡ ∈ L∞(δ,∞) for any δ > 0.

(vi) ut ∈ L2(S−) ∩ L2(S+).

(vii) ut, uxx ∈ C(S−) ∩C(S+) and (u, s) satisfies the first and second equations of (P-N).

(viii) For any δ > 0, ux is Hölder continuous with respect to (t, x) in {(y, τ) ∈ S−
δ,∞ : s(τ) ≥

δ} and {(y, τ) ∈ S+
δ,∞ : s(τ) ≤ 1− δ} and ṡ is Hölder continuous in t ∈ [δ,∞).

(ix) (u, s) satisfies the fourth and fifth equations of (P-N).
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Theorem 7.1 assures the existence of a global smooth solution (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) of (P-N)
for any initial data (ϕ, ℓ). We define the ω-limit set ω(ϕ, ℓ) by (2.1). Then we can also obtain
the following result.

Theorem 7.2. Let ω(ϕ, ℓ) be the ω-limit set associated with the smooth solution (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ))
of (P-N). Then the following properties hold true.

(i) ω(ϕ, ℓ) is a non-empty, connected and compact set in H1(I)× Ī.
(ii) ω(ϕ, ℓ) is positively invariant: if (u∗, s∗) ∈ ω(ϕ ℓ), then (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) ∈ ω(ϕ, ℓ)

for every t ≥ 0.
(iii) If (u∗, s∗) ∈ ω(ϕ, ℓ), then it satisfies

(SP−N)



d1u
∗
xx + u∗f(u∗) = 0, u∗ ≥ 0 in (0, s∗),

d2u
∗
xx + u∗g(u∗) = 0, u∗ ≤ 0 in (s∗, 1),

u∗x(0) = u∗(s∗) = u∗x(1) = 0, if 0 < s∗ < 1,

−µ1u
∗
x(s

∗ − 0) + µ2u
∗
x(s

∗ + 0) = 0 if 0 < s∗ < 1,

u∗(0) = u∗x(1) = 0 if s∗ = 0,

u∗x(0) = u∗(1) = 0 if s∗ = 1.

Here it should be noted that Propositions 3.1 and 3.2 are still valid for (P-N); so that they are
applicable to derive some estimates in Theorem 7.1. Moreover, the comparison principle is also
available for (P-N) with slight modifications of definitions of a supersolution and a subsolution
as follows:

Definition 7.1. Let (u, s) ∈ C(Q̄) × C(Ī) possess the property (R) given in §4. Then (u, s)
is called a supersolution of (P-N) with initial data (ϕ, ℓ) if it satisfies the following:

ut ≥ d1uxx + uf(u) for (t, x) ∈ S−,

ut ≥ d2uxx + ug(u), u ≤ 0 for (t, x) ∈ S+,

u(t, s(t)) = 0 for t > 0,

ux(t, 0) ≤ 0 for t ∈ {τ > 0 : 0 < s(τ) ≤ 1},
ux(t, 1) ≥ 0 for t ∈ {τ > 0 : 0 ≤ s(τ) < 1},
ṡ(t) ≥ −µ1ux(t, s(t)− 0) + µ2ux(t, s(t) + 0) for t ∈ {τ > 0 : 0 < s(τ) < 1},
u(0, x) = ϕ(x) for 0 ≤ x ≤ 1,

s(0) = ℓ.

On the other hand, if (u, s) satisfies the above relations by reversing the inequality signs except
for “ u ≤ 0 in S+” and replacing “ u ≤ 0 in S+” by “ u ≥ 0 in S−”, then it is called a
subsolution of (P) with initial data (ϕ, ℓ).

The we can prove the same comparison results as Theorems 4.1 and 4.2. Correspondingly
to Theorem 7.3, it is possible to show the following result:

Theorem 7.3. Let (ϕ, ℓ) ∈ C([0, 1])×(0, 1) possess the following properties: ϕ ∈ (C2((0, ℓ))∩
C2((ℓ, 1))) ∩ (C1([0, ℓ]) ∩ C1([ℓ, 1])) satisfies

d1ϕxx + ϕf(ϕ) ≥ 0, ϕ ≥ 0 in (0, ℓ),

d2ϕxx + ϕg(ϕ) ≥ 0, ϕ ≤ 0 in (ℓ, 1),

ϕx(0) ≥ 0, ϕ(ℓ) = 0, ϕx(1) ≤ 0,

0 ≤ −µ1 lim
x→ℓ−0

ϕx(x) + µ2 lim
x→ℓ+0

ϕx(x).
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Then the smooth solution (u(t;ϕ, ℓ), s(t;ϕ, ℓ)) of (P-N) with initial data (ϕ, ℓ) fulfills the follow-
ing properties:

(i) ut(t;ϕ, ℓ) ≥ 0 in Q and ṡ(t) ≥ 0 for t ≥ 0. In particular, if (ϕ, ℓ) is not a solution of
(SP-N), then t 7→ u(t;ϕ, ℓ) is strictly increasing in (0,∞) and t 7→ s(t;ϕ, ℓ) is strictly increasing
as long as ℓ ≤ s(t;ϕ, ℓ) < 1.

(ii) lim
t→∞

u±(t;ϕ, ℓ) = (u∗)± in H1(I) and lim
t→∞

s(t;ϕ, ℓ) = s∗, where (u∗, s∗) is a minimal

solution of (SP-N) in the class satisfying u∗ ≥ ϕ in I and s∗ ≥ ℓ.

Making use of Theorem 7.3 we will prove the following result which is similar to Proposition
4.1.

Proposition 7.1. In addition to (A.1) and (A.2), assume that f and g satisfy f(0) >
π2d1/4, g(0) > 0 and that g is increasing near u = 0. Let ℓ∗ ∈ (0, 1) satisfy

ℓ∗ > max

{
π

2

√
d1
f(0)

, 1− π

2

√
d2
g(0)

}
and define ϕ∗ by

ϕ∗(x) =


ε1 cos

πx

2ℓ∗
for 0 ≤ x ≤ ℓ∗,

−ε2 cos
π(1− x)

2(1− ℓ∗)
for ℓ∗ ≤ x ≤ 1,

where εi > 0, i = 1, 2 are sufficiently small numbers such that ε1µ1/ℓ
∗ ≥ ε2µ2/(1− ℓ∗). Suppose

that (ϕ, ℓ) ≥ (ϕ∗, ℓ∗). Then the smooth solution of (P-N) with initial data (ϕ, ℓ) satisfies

lim
t→∞

(u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)) = (u∗1, 1) in the sense of Ω-topology, (7.1)

where (u∗1, 1) is a minimal positive solution of (SP-N). Moreover, there exists T ∗ > 0 such that

s(t;ϕ, ℓ) = 1 for t ≥ T ∗ and s(t;ϕ, ℓ) < 1 for 0 ≤ t < T ∗. (7.2)

Proof. The proof can be carried out essentially in the same manner as Proposition 4.1. One
can show that (u1(t, x), s1(t, x)) := (ϕ∗(x), ℓ∗) is a subsolution for (P-N) provided that ε1 and
ε2 satisfy

min
0≤u≤ε1

f(u) ≥ d1π
2

4(ℓ∗)2
and

ε1µ1

ℓ∗
≥ ε2µ2

1− ℓ∗
.

So the discussions in Steps 2 and 3 in the proof of Proposition 4.1are still valid with obvious
modifications. Therefore, we can prove (7.1).

Finally, in order to show (7.2) we use the following identity in place of (4.33):

d

dt

{
µ1

d1

∫ s(t)

0

u(t, x)dx+
µ2

d2

∫ 1

s(t)

u(t, x)dx+ s(t)

}

=
µ1

d1

∫ s(t)

0

u(t, x)f(u(t, x))dx+
µ2

d2

∫ 1

s(t)

u(t, x)g(u(t, x))dx

(7.3)

as long as 0 < s(t) < 1. Here we have simply written (u(t, ·), s(t)) in place of (u(t, ·;ϕ, ℓ), s(t;ϕ, ℓ)).
Assume 0 < s(t) < 1 for all t ≥ 0. Observe that limt→∞ s(t) = 1 and that limt→∞ u(t, ·) = u∗1
uniformly in Ī, where u∗1 is a positive solution of

d1u
∗
1,xx + u∗1f(u

∗
1) = 0 with u∗1,x(0) = u∗1(1) = 0.
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Therefore, limt→∞
∫ 1

s(t)
u(t, x)g(u(t, x))dx = 0 and

lim
t→∞

∫ s(t)

0

u(t, x)f(u(t, x))dx =

∫ 1

0

u∗1f(u
∗
1)dx = −d1

∫ 1

0

u∗1,xxdx = −d1u∗1,x(1) > 0.

Hence there exist positive constants c1 and T1 such that

µ1

d1

∫ s(t)

0

u(t, x)f(u(t, x))dx+
µ2

d2

∫ 1

s(t)

u(t, x)g(u(t, x))dx ≥ c1 for all t ≥ T1.

This fact together with (7.3) implies

s(t) → ∞ as t→ ∞,

which is a contradiction. Thus we have shown (7.2).

We will study the structure of the set of solutions of (SP-N). Our first task is to study the
following auxiliary problem: for any ξ ∈ (0, 1) condider

(AP−N)


d1vxx + vf(v) = 0, v > 0 in (0, ξ),

d2vxx + vg(v) = 0, v < 0 in (ξ, 1),

vx(0) = v(ξ) = vx(1) = 0.

As in §5, we assume that f and g satisfy (A¿1)∗ and (A.2)∗. We will employ the phase plane
method for the study of (AP-N). Note that (AP-N) consists of two types of boundary value
problems: {

d1vxx + vf(v) = 0, v > 0 in (0, ξ),

vx(0) = v(ξ) = 0
(7.4)

and {
d2vxx + vg(v) = 0, v < 0 in (ξ, 1),

v(ξ) = vx(1) = 0.
(7.5)

In order to solve (7.4) (and (7.5)), consider the following initial value problem{
d1wxx + wf(w) = 0, x > 0,

w(0) = q > 0, wx(0) = 0.
(7.6)

Let w(x; q) be the solution of (7.6). Define

Y (q) = inf{x > 0 : w(x; q) = 0}.

By the phase plane analysis one can derive

Y (q) =

√
d1
2

∫ q

0

dw√
F (q)− F (w)

=

√
d1
2

∫ 1

0

dσ√
H(σ, q)

where H(σ, q) =

∫ 1

σ

τf(qτ)dτ (for details, see §5). By (A.1)∗, Y (q) is a continuous and increas-

ing function in q ∈ (0, 1) such that

lim
q→0

Y (q) =
π

2

√
d1
f(0)

and lim
q→1

Y (q) = +∞.
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When we study (7.4), the above considerations allow us to show that, if ξ > a := (π/2)
√
d1/f(0),

then (7.4) has a unique solution v1(x; ξ) , while, if ξ ≤ a, then (7.4) admits no solution. Here
it should be noted that v1(x; ξ) is given by

v1(x; ξ) = w(x; q(ξ)),

where q(ξ) is determined from Y (q(ξ)) = ξ in case ξ > a. Moreover, if we set Φ1(ξ) :=
−µ1v1,x(ξ − 0; ξ), then we see

Φ1(ξ) = µ1{2F (q(ξ))/d1}1/2;

so that Φ1 is a continuously increasing function of ξ ∈ (a,∞) such that

lim
ξ→a

Φ1(ξ) = 0 and lim
ξ→∞

Φ1(ξ) = µ1

√
2F (1)/d1.

One can obtain analogous results for (7.5). Set b := (π/2)
√
g(0)/d2. If ξ < 1− b, then (7.5)

has a unique solution v2(x; ξ), while, if ξ ≥ 1 − b, then (7.5) admits no solution. Moreover,
when we define

Φ2(ξ) = −µ2v2,x(ξ + 0; ξ)

in case v2(x; ξ) exists, we can also show that Φ2 is a continuously decreasing function of ξ ∈
(−∞, 1− b) such that

lim
ξ→1−b

Φ2(ξ) = 0 and lim
ξ→−∞

Φ2(ξ) = µ2

√
2G(1)/d2.

We are ready to study (SP-N). Observe that (SP-N) has trivial solutions (0, s∗) with 0 ≤
s∗ ≤ 1. Additionally, (SP-N) has two types of semi-trivial solutions (u∗, 1) and (u∗, 0), where
u∗ and u∗, respectively, satisfy{

d1u
∗
xx + u∗f(u∗) = 0, u∗ > 0 in (0, 1),

u∗x(0) = u∗(1) = 0
(7.7)

and {
d2u∗,xx + u∗g(u∗) = 0, u∗ < 0 in (0, 1),

u∗(0) = u∗,x(1) = 0.
(7.8)

When we intend to solve (7.7), it is sufficient to look for a solution w(x; q)of (7.6) such that
Y (q) = 1. Therefore, it is easily seen that (7.7) has a unique solution u∗ if and only if a < 1.
Similarly, (7.8) has a unique solution u∗ if and only if b < 1.

In order to find a non-trivial solution of (SP-N), we have only to find ξ ∈ (0, 1) satisfying
Φ1(ξ) = Φ2(ξ). Clearly, such ξ exists (uniquely) if and only if a+ b < 1.

The above considerations enable us to prove the following theorem.

Theorem 7.4. Assume (A.1)∗, (A.2)∗ in place of (A.1), (A.2) and set a = (π/2)
√
d1/f(0),

b = (π/2)
√
d2/g(0). Let S denote the set of non-trivial solutions of (SP-N). Then the following

properties hold true.
(i) If a ≥ 1 and b ≥ 1, then (SP-N) admits no non-trivial solution.
(ii) If a < 1 and b ≥ 1, then

S := {(u∗, 1)},
where u∗ is a solution of (7.7).

(iii) If a ≥ 1 and b < 1, then
S := {(u∗, 0)},
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where u∗ is a solution of (7.8).
(iv) If a < 1, b < 1 and a+ b > 1, then

S := {(u∗, 0), (u∗, 1)}.

(v) If a+ b < 1, then there exists a unique number c ∈ (0, 1) such that

S := {(u∗, 0), (u∗, 1), (uc, c)} with u∗ < uc < u∗ in I.

When we study the asymptotic behavior of the smooth solution of (P-N), the comparison
principle is a very important tool for the analysis. Repeating the essentially same arguments as
in §6 we can sow similar results to Theorem 6.1 and Propositions 6.1-6.4 with “a = π

√
d1/f(0)

and “b = π
√
d2/g(0)” replaced by “a = (π/2)

√
d1/f(0) and “b = (π/2)

√
d2/g(0)”, respectively.

As to the global attractivity of the trivial solutions, Proposition 6.1 is still valid. It is
sufficient to repeat the proof of Proposition 6.1 with use of v(t) = α(t) cos(πx/2) in place of
v(t) = α(t) sinπx.

Owing to Proposition 7.1, Proposition 6.2 holds true with use of

ϕ∗(x) =


ε1 cos

πx

2ℓ∗
for 0 ≤ x ≤ ℓ∗,

−ε2 cos
π(1− x)

2(1− ℓ∗)
for ℓ∗ ≤ x ≤ 1,

instead of (6.14). This proposition implies not only the global stability of (u∗, 1) but also the
instability of the set {(0, s∗) : 1 ≥ s∗ > max{a, 1− b}}.

We will discuss the stability of the set {(0, s∗); s∗ satisfies a certain condition} when a < 1.
We take s0 ∈ (0, a) and δ > 0 such that s0(1 + δ) < a. Define

s1(t) = s0{1 + δ(1− e−αt)},

where α > 0 is to be determined later. We also define

u(t, x) =

{
εe−βt cos πx

2s1(t)
for 0 ≤ x ≤ s1(t),

0 for s1(t) ≤ x ≤ 1.

We will show that(u1, s1) is a supersolution for (P-N). For 0 ≤ x ≤ s1(t),

u1,t − d1u1,xx − u1f(u1) ≥

{
d1

(
π

2s1(t)

)2

− β − f(u1)

}
u1

≥

{
d1

(
π

2s0(1 + δ)

)2

− β − f(0)

}
u1.

Therefore, if we choose a sufficiently smallβ satisfying d1(π/2s0(1 + δ))2 ≥ f(0) + β, then we
see u1,t − d1u1,xx − u1f(u1) ≥ 0.

Since u1(t, s1(t)) = 0 and u1,x(t, 0) = 0, it remains to show

ṡ1(t) = s0αδe
−αt ≥ −µ1u1,x(t, s1(t)− 0) + µ2u1,x(t, s1(t) + 0) = µ1εe

−βt · π

2s1(t)
.

This inequality can be shown provided that

β ≥ α > 0 and 2s20αδ ≥ εµ1π.

Then it is possible to obtain the following proposition.
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Proposition 7.2. Assume a < 1. For any fixed s0 ∈ (0, a), define

ϕε(x) =

ε cos
πx

2s0
for 0 ≤ x ≤ s0,

0 for s0 ≤ x ≤ 1.

Then there exists a sufficiently small ε1 > 0 such that, for every ε ∈ (0, ε1), the smooth solution
of (P-N) with initial data (ϕε, s0) satisfies

lim
t→∞

(u(t, ·;ϕε, s0), s(t;ϕε, s0)) = (0, s∗) in the sense of Ω-topology

with some s∗ ∈ [0, a).

Remark 7.1. It should be noted that a similar result holds true in case b < 1 as is stated in
(ii) of Proposition 6.3.

Finally it is easy to see that Proposition 6.4 holds true; so that (uc, c) in Theorem 7.4 is
unstable.

Taking account of the above discussions we can complete information on the asymptotic
behavior of the smooth solution of (P-N). Correspondingly to Theorem 6.2, we can get analogous
precise results on the stability and instability of all solutions of (SP-N).
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