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A B S T R A C T

The free energy landscape (FEL) depends on temperature by its definition and the FEL is reorganized with time delay when the temperature is modulated. We
investigate how the relaxation of the FEL manifests itself in physical properties. Exploiting a simple two-level model for the dielectric relaxation, we first show that
the relaxation of the FEL produces time dependence of the relaxation time of the dielectric response. Then we discuss the relaxation of dielectric susceptibility when
the temperature is suddenly increased/decreased and show that the susceptibility relaxes to the equilibrium value with the same relaxation time as the FEL in the
long time limit. In order to show the general feature of the temperature modulation spectroscopy, we consider the dynamics of an order parameter of the Landau
model which has a delayed response to the temperature modulation with relaxation time. When the temperature is modulated sinusoidally, we show that there
appear second order responses at the sum and the difference of the frequencies of the external field and the temperature modulation and that the relaxation time of
the FEL can be deduced from these two responses.

1. Introduction

The free energy landscape (FEL) approach is robust in explaining
various physical properties of non-equilibrium systems such as the
cooling rate dependence of the entropy and specific heat and the
time–temperature-transformation diagram of the crystallization time of
super-cooled liquids. The FEL theory is a generalization of the Landau
theory of phase transition to non-equilibrium systems which show a
clear distinction between slow and fast dynamics, where atomic con-
figurations play the role of the order parameters in the Landau theory.
The FEL theory can explain various properties of super-cooled liquids
and singularities related to glass transition in a unified framework
[1,2].

The important feature of the FEL is in the fact that it depends on
temperature, which is a clear contrast to the potential energy landscape
introduced by Goldstein [3]. Therefore, the FEL responds to tempera-
ture modulations and the response must manifest itself in physical
properties of the system described by the FEL. There have been several
works which observed response of systems to temperature modulation.
Hecksher et al. [4] reported the relaxation of dielectric susceptibility
when the temperature was increased/decreased suddenly. Harada et al.
[5] investigated the dielectric response when the temperature is
modulated sinusoidally, and argued that the experimental results can
be explained by introducing a time dependence of the α-relaxation
time. In fact, we have shown that a delay in the response of the FEL to a

sinusoidal temperature modulation produces the dielectric suscept-
ibility showing significant dependence on the relaxation time of the FEL
under the crossover temperature [2].

In this paper, we first discuss in Section 2 the dielectric relaxation
when a step temperature modulation is applied. We exploit a simple
two level model for the dielectric relaxation and show that the delayed
response of the FEL gives rise to the time-dependent relaxation time. In
Section 3, we investigate the dynamics of an order parameter which is
governed by the Landau free energy with a dissipation term, and show
that (1) a relaxation time shows time dependence when the tempera-
ture is changed suddenly, and (2) there appear second order responses
at the sum and the difference of the frequencies of the external field and
the temperature modulation when the temperature is modulated sinu-
soidally, and that the relaxation time of the FEL can be deduced from
these two responses. Section 4 is devoted to conclusion.

2. Dielectric relaxation under a temperature jump

2.1. Dielectric relaxation

As a model system, we consider a set of dipoles each of which takes
independently one of two opposite directions denoted by σ=1 and
σ=−1 in the external electric field E(t). We denote by p(σ, t) the
probability that a dipole is in state σ at time t. Then, the polarization P
(t) is given byP(t)= μ[p(+1, t)− p(−1, t)], where μ is the electric
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dipole moment of a dipole. We assume that probability p(σ, t) obeys a
master equation

=p t
t

w p t w p t( , ) ( , ) ( , ), , (1)

where wσ, σ′ is the transition rate of the dipole from state σ to σ′. We
assume that a barrier exists between two states and employ.

= ±
±w w U µE t

k T
exp ( )

B
, 0

(2)

where ∆U is the barrier height between two states, w0is the attempt
frequency which serves as the scale of (time)−1, and kB is the
Boltzmann constant and T is the temperature. Note that the transition
rate satisfies the detailed balance so that the probability distribution
approaches the equilibrium value after infinitely long time. It is easy to
show that the polarization obeys

=P t W µ µE
k T

µE
k T

( )
t

2 sinh cosh P(t)
B B (3)

where =W w exp U
k T0 B

[6]. Assuming the weak external electric
field, we solve this equation by perturbation method in which the po-
larization is expanded as

= + +P P t P t(t) ( ) ( )0 1 (4)

It is straightforward to show that the leading two terms obey the
following equations:

=P t
t

WP t( ) 2 ( )0
0 (5a)

=P t
t
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k T

( ) 2 ( ) ( )
B

1
1

2

(5b)

Now, in order to include effects of the delay in response of the FEL
to temperature modulations, we assume that W depends on time. One
may assume that either the barrier height ∆U or the temperature T
shows a delayed response [7]. In order to make mathematical analysis
simple, we assume here, without loss of the essential features, that
parameter W has a simple time dependence.

= +W W t w A A A e( ) exp{ [ ( ) ]}t
0 1 0 1

/ F (6)

when the temperature of the heat bath is changed at time t= 0.
Namely, the parameter W changes from e−A0 at t=0 to e−A1 at t=∞
due to the change in the temperature of the heat bath, and τF may be
regarded as the relaxation time of the FEL.

2.2. Time dependence of the relaxation time

It is straightforward to solve Eq. (5a). We find that

=P t P W t dt( ) (0) exp 2 ( )
t

0 0 0 (7)

and, therefore, the dielectric relaxation is given by

=P t P e( ) (0) t
0 0

( ) (8)

with

= w e E E(t) exp[ 2 { ( ) ( )}]F
A

i i0 1 (9)

where α=(A0− A1)e−t/τF and β= A0− A1 and =x dtE ( )i
x

e
t

t
is

the integrated exponential function. Note that Eq. (9) satisfies the
correct limits φ(t~0)=−2w0e−A0t and φ(t~∞)=−2w0e−A1t. Eq.
(8) indicates that the relaxation time of the polarization depends on
time. In fact, we can define the relaxation time τP by τP=−[d ln P0(t)/
dt]−1, and thus τP is given by

=
W t

1
2 ( )P (10)

Fig. 1 shows the relaxation of the polarization for three different
values of the relaxation time of the FEL. We show in Fig. 2 the time
dependence of the relaxation time of the polarization.

In conclusion, the time-dependent relaxation time [5] may be ac-
counted by the delayed response of the FEL to the temperature jump.

2.3. Relaxation of the susceptibility

When a sinusoidal external electric field E(t)= E0 cosωt=Re E0eiωt

is applied, the response of the system is measured from the first order
term P1(t) determined by Eq. (5b) within the linear response regime. It
is straightforward to obtain

Fig. 1. The relaxation of the polarization for w0τF=5, 1, 0.5, when A0= 1,
A1= 2.

Fig. 2. The time dependence of the relaxation time for w0τF=5, 1, 0.5, when
A0= 1, A1= 2.
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The short time behavior is written as
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with W′(0)=w0(A0− A1)e−A0/τF, and in the long time limit, it is
written as
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with ψ(t)=w0e−A1(A1− A0)τFe−t/τF. Namely, the susceptibility relaxes
to the equilibrium value with the same relaxation time as the FEL in the
long time limit. Fig. 3 shows schematically the relaxation of the sus-
ceptibility at a given frequency.

3. Effect of temperature modulation in the Landau model

3.1. Basic formalism

We consider a system whose free energy Φ(M) is given by the
Landau form

= + >M A T M BM MH B( ) ( ) ( 0)2 4 (15)

where M is the order parameter and H is an external field. We assume
that the dynamics of the order parameter is described by the Lagrangian
equation

+ =d
dt M M M

0L L F

(16)

where the LagrangianL is defined by

=M M t µ M M( , , ) 2
( )2L (17)

and the dissipation term M( )F is given by

=M k M( )
2

2F (18)

In order to investigate the delay in response of the free energy to
temperature modulations, we assume A(T) > 0 and consider a mass-
less case μ=0, i.e.

= +k dM
dt

A T M BM H2 ( ) 4 3
(19)

3.2. Effect of a discontinuous change in temperature

We introduce the following temperature jump at t=0;

=
>

T t T t
T t

( ) ( 0)
( 0)

0

1 (20)

and assume that parameter A(t)≡A(T(t)) relaxes from A0≡ A(T0) to
A1≡A(T1) with delay as

=
+ >

A t
A t

A A A e t
( )

( 0)
( ) ( 0)

t
0

1 0 1 F (21)

We first consider the relaxation of the order parameter towards the
equilibrium value Meq when no external field exists. It is easy to show
that δM(t)≡M(t)−Meq is given by

=M t M
k

A t dt( ) exp 2 ( )
t

0 0 (22)

where we have assumed that ∣δM(t)∣ is small. We can define the re-
laxation time τM of δM(t) by

= d M
dt

ln
M

1

(23)

Fig. 4 shows the time dependence of the relaxation time τM. In the
long time limit, τM approaches τF.

We next consider the susceptibility when an external field H
(t)=H0eiωHt is applied. The deviation of the order parameter δM(t)
obeys

= +k d M
dt

A t M H e2 ( ) i t
0 H

(24)

It is straightforward to find the solution to Eq. (24) in the form

=M t t H e( ) ( , ) i t
0 H (25)

where the time-dependent susceptibility χ(ω, t) is given by

=t
k k

A t dt i t t dt( , ) 1 exp 2 ( ) ( )
t

t

t
H0 (26)

For a fixed ωH, the susceptibility decays to its equilibrium value in
proportion to

Fig. 3. The relaxation of the susceptibility at a given frequency. (a) A1 > A0
(b) A1 < A0.

Fig. 4. The time dependence of the relaxation time. (t0≡ k/2A0).
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We show in Fig. 5 the relaxation of the susceptibility for (a) T0 > T1
and (b) T0 < T1.

3.3. Effect of a sinusoidal temperature modulation

When the temperature of the heat bath is modulated sinusoidally as

= +T T T t(t) cos ( )T (28)

the delayed response of the free energy can be represented as the
modulation of A(t):

= + = +
+

A t A A t e dt A A t( ) [ cos ( )] cos ( )
1 tan

t
T

t t T
2

F

(29)

where tanφ≡ωTτF. We solve Eq. (24) with A(t) given in Eq. (29) by the
perturbation method expanding δM as

= + + +M M M M0 1 2 (30)

Through a straightforward calculation, we find the following solu-
tions

= ( )M t M e( ) (0)
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k t

0 0
2
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with the linear susceptibility = +( )H
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Namely, the second order response appears at the sum and the
difference of two frequencies. Fig. 6(a) and (b) show the ωH dependence
of the real and imaginary parts of χ2+(ωH,ωT), respectively, for
ωTt0= 0.2 and ωTτF=0, 1, 10, 100.

We find that the second order susceptibilities χ2± (ωH,ωT) satisfy
the following symmetry relations:

=+( , ) ( , )H H T2 T 2 (35)

=+" ( , ) " ( , )H T H T2 2 (36)

Since the second order susceptibilities depend on the relaxation
time of the free energy, we can deduce the relaxation time by the fol-
lowing method. We first define X±(ωH,ωT) and its real and imaginary
parts by

±
= +±

±
± ±X X iX( , )

( , )
( )

"H T
H T

H T

2

1 (37)

Then, we can show

=
+

+ +

+ +

X X X X
X X X X

tan 2 " "
" " (38)

from which we can obtain tanφ≡ωTτF.

4. Conclusion

We have reported various effects produced by the delayed response
of the free energy landscape to temperature modulations. Sudden
change of the temperature induces time dependence of the relaxation
time and the linear susceptibility. In the simple models we studied here,
the longtime behavior of these quantities is determined by the relaxa-
tion time of the free energy landscape. Therefore, experiments reported
by Hecksher et al. [4] may be explained by the relaxation of the FEL

When the temperature is modulated sinusoidally, the second order
response in the dielectric susceptibility appears at the sum and the
difference of frequencies of the external field and the temperature as
reported by Harada et al. [5] This behavior has been explained by the
FEL framework for the dielectric response [2].

We also examined effects of the delayed response of the FEL for the
order parameter described by the Landau model and have shown that
similar effects to the dielectric response will appear in the relaxation
time and the susceptibility. It is interesting to note that we can get much
information on the free energy landscape from the temperature mod-
ulation spectroscopy, since the second order response can be measured
without going to the long time limit.

The Landau model studied here is robust and can be applied to
many phenomena. Therefore, the present analysis will open up a new
horizon in the physics of non-equilibrium systems based on the free
energy landscape theory.
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Interest statements

This paper treats an important issue how one can get information on
the free energy landscape (FEL), the theory on which is believed to
provide unified understanding for thermodynamic and dynamic prop-
erties of non-equilibrium systems, in particular of super-cooled liquids,
glass formers and glass transition as described in the review paper by T.
Odagaki “Non-equilibrium statistical mechanics based on the free en-
ergy landscape and its application to glassy systems” J. Phys. Soc. Jpn.
86, 082001 (2017).

The FEL depends on temperature by definition in contrast to the
potential energy landscape which does not depend on temperature.
Therefore, responses of the system against temperature modulations
will directly give information on the FEL. This paper presents what one
can expect from the temperature modulation theoretically for the first
time.

Fig. 5. The relaxation of the susceptibility. (a) T0 > T1 and (b) T0 < T1.
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