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On the basis of the free energy landscape (FEL) approach to non-equilibrium systems, the cooperatively rearranging
region (CRR) is defined as a region in the FEL which supports two basins and the entire configurational space is
tessellated by a set of CRR’s. The configurational entropy is shown to be in proportion to the inverse of the average size
of CRR. The average rate of structural relaxation defined by a geometrical mean of the transition rate in each CRR is
shown to be written in the form of the Adam–Gibbs relation. Various estimations of the size of CRR reported before are
assessed on the basis of the proper definition of CRR and the configurational entropy.

Structural relaxation in non-equilibrium systems plays an
essential role in determining their properties.1,2) There has
been a belief that an elementary process of the structural
relaxation occurs in a cooperatively rearranging region
(CRR) which was proposed by Adam and Gibbs.3) The
Adam–Gibbs relation states that the relaxation rate WðTÞ at
temperature T is related to a configurational entropy SCðTÞ
through

WðTÞ ¼ w0 exp � A
TSCðTÞ

� �
; ð1Þ

where A is a positive constant and w0 is an attempt
frequency. Their argument is based on two assumptions: one
is that the rate of structural relaxation is essentially
determined by the smallest CRR z� and is given by

WðTÞ ¼ w0 exp � z���

kBT

� �
; ð2Þ

where �� is the activation free energy per molecule and kB is
the Boltzmann constant. The other is that the configurational
entropy s�C of CRR of size z� is given by

s�C ¼ z�SC=N ð3Þ
because of the extensivity of entropy, and the configurational
entropy SCðTÞ is given by the configurational partition
function determined by the potential energy and the volume.

The Adam–Gibbs relation (1) has been used most
frequently in the analysis of relaxation in non-equilibrium
systems, since it relates a dynamic quantity to a thermody-
namic quantity. For example, the Adam–Gibbs relation has
been exploited in a theoretical analysis of glass transition.4)

However, there is a theoretical argument which disagrees
with the reasoning by Adam and Gibbs in the dimensionality
dependence of correlation length.5)

Since assumptions in the argument of Adam and Gibbs
are sloppy and ambiguous, there have been many different
interpretations of CRR and experiments have been reported
to determine the size of the CRR based on different
interpretations. Yamamuro et al.6,7) have obtained the con-
figurational entropy by subtracting the kinetic contribution
from the entropy which are computed from the specific heat.
Using Eq. (3), they reported the size z� of CRR for various
materials at their glass transition temperature Tg which are
less than 10 molecules.

Some researchers considered that the CRR is the area
of fluctuation of thermodynamic quantities,8,9) and other

researchers regarded it as the area of dynamic heterogeneity
which can be determined by photo-probe experiments10,11)

and by combining quasi-elastic neutron scattering and
positron annihilation life time spectroscopy.12) According to
these experiments, the size of CRR is estimated to be more
than 100 molecules.

On the theoretical side, an idea of random first order
transition (RFOT) has been proposed13,14) and many
researches have been reported to explain the glass transition
on the basis of the RFOT theory. The basic idea is to regard
the supercooled liquid state as a mosaic of entropic droplets
which are considered to correspond to the CRR since the
dependence of the viscosity on the configurational entropy is
the same as the Adam–Gibbs expression.15) In this approach,
the configurational entropy is defined by a similar argument
to the Adam and Gibbs argument.

Key questions at this moment are what are the proper
definitions of the CRR and the configurational entropy, and if
the Adam–Gibbs relation (1) still holds with these proper
definitions. In this letter, I give an answer to these key
questions on the basis of the free energy landscape (FEL)
approach to non-equilibrium statistical mechanics16) and
present a foundation of the Adam–Gibbs relation. I also
assess various interpretations of CRR.

I begin with a proper definition of the configurational
entropy. In the statistical mechanics based on the FEL
approach, an N body distribution function �Nðfrig; fRigÞ is
introduced which is determined by fast motion of each atom
around its average position fRig, and the partition function is
written as

ZðT; V; NÞ ¼ 1

N!

Z
ZðT; V; N; fRigÞ dfRig; ð4Þ

where the partial partition function ZðT; V; N; fRigÞ is
defined by

ZðT; V; N; fRigÞ ¼ 1

h3N

Z
exp � Hðfrig; fpigÞ

kBT

� �

� �Nðfrig; fRigÞ dfrig dfpig: ð5Þ
Here, T, V, and N are the temperature, volume and number
of atoms, respectively, and h is the Planck constant and
Hðfrig; fpigÞ is the Hamiltonian, where frig and fpig are
the position and momentum of i-th atom. The probability
distribution function PðfRigÞ of a configuration fRig is
given by16)
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PðfRigÞ ¼ exp ��ðfRigÞ � F

kBT

� �
: ð6Þ

Here, �ðfRigÞ is the FEL determined by the partial partition
function

�ðT; V; N; fRigÞ ¼ �kBT lnZðT; V; N; fRigÞ ð7Þ
and F is the free energy of the system

F ¼ �kBT lnZðT; V; NÞ: ð8Þ
Since the entropy is given by the temperature derivative of

the free energy S ¼ kB@½T lnZ�=@T, it can be written as17)

S ¼ hSðfRigÞi þ h�kB lnPeqðfRigÞi; ð9Þ
where SðfRigÞ ¼ kB@½T lnZðT; V; N; fRigÞ�=@T is the entro-
py of configuration fRig, and h� � �i denotes an average
over the probability distribution function h� � �i ¼ R � � �
PðfRigÞ dfRig.

The first term on the right hand side of Eq. (9) may
be called the glass entropy and the second term is the
configurational entropy SC, namely

SC ¼ h�kB lnPðfRigÞi: ð10Þ
This definition is different from that assumed by Adam and
Gibbs3) and by Kirkpatrick and Thirumalai.5) The configura-
tional entropy defined by Adam and Gibbs contains a part of
glass entropy and thus it is larger than the proper configura-
tional entropy. The definition of configurational entropy
employed in Ref. 5 is the special case of Eq. (10), where
only the configurations at local minima are considered and
each minimum is assumed to be equally probable. Namely, if
there are Nb equally probable basins, PðfRigÞ ffi 1=Nb and
thus SC ffi kB lnNb. It is important to note the definition (10)
of the configurational entropy is different from that of the
Adam–Gibbs argument3) which is related to the partition
function due to the potential energy.

Next, I consider a relevant definition of CRR on the basis
of the FEL approach. The FEL consists of many basins in
the 3N dimension configurational space. Here, I assume
monoatomic molecules for the sake of simplicity. It is
straightforward to extend the present argument to poly-
atomic molecules. The FEL can be tessellated into a set of
basins in the same spirit for the potential energy landscape.18)

The elementary process of structural relaxation is a transition
from a basin to its adjacent basin. In order to keep the simple
relation between the elementary process and the rearranging
region, I define a CRR by the area of molecules forming two
adjacent basins and tessellate the entire FEL into a set of
CRR’s as schematically shown in Fig. 1. I denote the k-th
CRR as fRigk, the number of molecules in the k-th CRR as
Nk and the probability of the CRR as PkðfRigkÞ. The average
size hNCRRi of CRR is given by

hNCRRi ¼ 1

L

XL
k¼1

Nk ¼ N

L
; ð11Þ

where L is the number of CRR’s in the system.
Since PðfRigÞ ¼

QL
k¼1 PkðfRigkÞ, the configurational en-

tropy Eq. (10) is given by

SC ¼
XL
k¼1

h�kB lnPkðfRigkÞi ¼ Ls�C; ð12Þ

where s�C ¼ h�kB lnPkðfRigkÞi is the average configura-
tional entropy of a CRR. Therefore, the average size hNCRRi
of CRR can be expressed as

hNCRRi ¼ Ns�C
SC

: ð13Þ

If the configuration is represented by two minima, then
s�C ¼ h�kBfpk ln pk þ ð1 � pkÞ lnð1 � pkÞgi, where pk is the
probability of one of two basins in the k-th CRR. When two
minima are equally probable, pk ¼ 1=2 and s�C ¼ kB ln 2.

Now, I move on to the discussion of relaxation rate. It
is natural to assume that the transition rate WkðTÞ of the
structural relaxation within the k-th CRR is given by

WkðTÞ ¼ w0 exp � Nk��

kBT

� �
; ð14Þ

where �� is an activation free energy per molecule as in
Eq. (2). Assuming that the transition within each CRR is
independent, I define the transition rate of the structural
relaxation WðTÞ by a geometrical mean of WkðTÞ

WðTÞ ¼
YL
k¼1

WkðTÞ
 !1=L

: ð15Þ

It is straightforward to show that

WðTÞ ¼ w0 exp �

1

L

XL
k¼1

Nk��

kBT

0
BBBB@

1
CCCCA

¼ w0 exp � hNCRRi��

kBT

� �
: ð16Þ

Therefore, using Eq. (13), I obtain the Adam–Gibbs relation

WðTÞ ¼ w0 exp � A
TSCðTÞ

� �
ð17Þ

with A ¼ ��s�CN
kB

. This completes the derivation of the Adam–

Gibbs relation on the basis of the FEL approach.
Exploiting the present argument, I assess various exper-

imental approaches to determine the size of CRR.
The definition of the CRR described above implies

immediately existence of a group of atoms which change
their positions within a CRR. I call these small number of
molecules a simultaneously rearranging region (SRR), which

ΔΦ

Fig. 1. (Color online) A schematic view of tessellation of the configu-
rational space into CRR’s, where each CRR supports two adjacent local
minima of the FEL.
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is smaller than the CRR. In fact, existence of such region has
been proposed by Matsuoka and Quan19) as conformers
which relax together. They estimated that a typical size of the
domain is 7–10 conformers at Tg.

There have been many researchers who considered the
CRR as a sort of fluctuating area. Donth8) considered the
CRR as an area of thermodynamic fluctuation and estimated
the size of CRR to be between 35 and 290 molecules on the
basis of thermograms and formulas from a fluctuation theory
of glass transition. Correlation of this kind of area with
the fragility has been discussed by Bouthegrourd et al.9)

Observing dynamical quantities, some researchers regarded
the CRR as an area of dynamical heterogeneity. Ediger
et al.10,11) observed a strong correlation between translational
and rotational diffusion which was qualitatively explained by
spatially heterogeneous dynamics. Kanaya et al.12) consid-
ered that a CRR is the dynamically heterogeneous region.
They obtained a void size by the positron annihilation
lifetime spectroscopy and the mean square displacement by
the quasielastic neutron scattering, and estimated the size of
CRR by combining these results, and reported 113 molecules
as the size of CRR of cis-1,4-polybutadiene at its Tg.

In the FEL approach, fluctuating or heterogeneous area is
represented by local fluctuation of the structure of the FEL.
The area of frequent motion corresponds to an area with
shallow basins in the FEL, and thus the size of this area is
supposed to be much larger than the size of CRR defined in
the present approach. Estimations of the size of CRR from
fluctuating areas overestimate the size of CRR and the
smallest within the estimations may correspond to the proper
size of CRR.

Yamamuro et al.6,7) estimated the configurational entropy
from the measurement of the specific heat and calculated z�

from Eq. (3). They reported 3.8 molecules for 3 bromopen-
tane, 5.8 molecules for ethylbenzene and 6.7 molecules for
Toluene for z� at their Tg. Apparently, they have over-
estimated the configurational entropy due to misplacement of
a part of glass entropy into the configurational entropy. It is
also important to note that the estimation of entropy by
integrating the specific heat needs some care. In fact, it is
shown17) that the specific heat is written as

C ¼ Cg þ Cc þ�C; ð18Þ
where Cg ¼ hT@SðfRigÞ=@Ti is the glass specific heat, CC ¼
h��ðfRigÞ�EðfRigÞi=kBT2 is the configurational specific
heat and �C ¼ h�SðfRigÞ�EðfRigÞi=kBT is the specific
heat due to the temperature dependence of the proba-
bility distribution PðfRigÞ. Here, �AðfRigÞ ¼ AðfRigÞ �
hAðfRigÞi for a physical quantity AðfRigÞ of configuration

fRig. This indicates that S �
R
Cg=T dT is larger than SC.16)

Therefore, this difference also makes the estimation of the
size of CRR smaller than the real size. If the configurational
entropy is obtained correctly, then this method will give the
proper size of CRR.

In the recent interpretation of the random first-order
transition theory,15) the length scale of an entropic droplet
is supposed to be determined by balance between the free-
energy gain due to configurational entropy and the surface
energy. Although the derived relation between the viscosity
and the configurational entropy coincides with the Adam–

Gibbs expression, it is not clear if the length scale is identical
to the size of a CRR.

In conclusion, the physically proper definition of CRR and
the configurational entropy gives rise to the Adam–Gibbs
relation, which in turn provides a strong support for the
unified explanation of the glass transition singularities based
on the FEL approach.4,16) It is highly expected to determine
the size of CRR by experiments and computer simulation on
the basis of the present definition.
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