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a b s t r a c t

Exploiting the coherent medium approximation, I investigate a random walk on objects
distributed randomly in a continuous space when the jump rate depends on the distance
between two adjacent objects. In one dimension, it is shown that when the jump rate
decays exponentially in the long distance limit, a non-diffusive to diffusive transition
occurs as the density of sites is increased. In three dimensions, the transition exists
when the jump rate has a super Gaussian decay.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Random walk is a highly robust process which has been applied in almost all areas of science including biology,
aterials sciences, economics and socio-physics [1]. It has also been exploited in the description of structural evolution
y the free energy landscape theory of non-equilibrium systems [2].
Conventionally, a random walk is defined as a process that a walker makes consecutive jumps on a lattice or on a

omplex network or in a continuous space and the length of a single step depends on traits of the walker. On a lattice,
he step length is usually set equal to the bond length between adjacent lattice sites, and on a complex network jumps
re allowed along a link between nodes. Theoretically, it is possible to assume a longer step length.
The step length of a random walk in a continuous space can be a constant or can obey a certain distribution. The

andom walk whose step length obeys the Lévy distribution with a long tail is called Lévy flight [3] and has been applied
n various problems including the analysis of flight trajectories of an albatross [4] and the description of slow dynamics
f ions in alkali silicate glasses [5].
There has been a different setting for a random walk where a walker moves on objects distributed randomly in a space.

he walker can move from one object to other object when the distance between these objects is less than the longest
tep-length of the walker. This type of random walk has been applied to the hopping conduction [6–8]
In recent years, softwares such as FireChat and Bridgefy have been developed which enable people to send messages to

designated person via network of mobile phones without using the Internet [9]. This network is called a mesh network.
amely, a message moves from one phone to nearby phones successively and will eventually reach the target. In this
rocess, information makes jumps from one phone to nearby phones and the jump distances may be different among
umps. When the transmission process of information is regarded as a randomwalk of information among phones, a simple
odel to describe it is a random walk on objects distributed randomly in a space and the step length depends on the
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ransmission range of the electro-magnetic wave from a mobile phone and the density of objects. Therefore, this process
s essentially identical to the hopping conduction problem described above. Differences between the mesh network and
he hopping conduction problem are in the transmission range and in the time dependence of the distribution of objects.
t is apparent that this random walk on the mesh network is different from the Lévy flight [3] since the step length does
ot obey the Lèvy distribution and the walker does not move in a free space but on objects distributed randomly.
In this paper, I focus on the spatial effects of the random walk in a mesh network, leaving the effect of the time

ependent structure in the future work. Introducing a simple model relevant to the process described above, I investigate
random walk among randomly distributed objects, where a walker makes a jump from an object to its adjacent neighbor
n a limited solid angle along a fixed number of directions. The jump rate is assumed to depend on the distance between
wo objects. Since objects are distributed randomly, the walker makes jumps with variable ranges. Here, I focus on
he diffusion constant, which is the most fundamental property, within the coherent medium approximation [8] and
iscuss the possibility of a transition from non-diffusive to diffusive states. Within the dynamical definition of percolation
rocess [8], this transition corresponds to percolation transition. In general, the time dependence of a mean squared
isplacement and the probability distribution contains important information of the process, which will be studied in the
uture.

In Section 2, I explain the model in some detail and the method of analysis based on the coherent medium
pproximation. In Section 3, I study the random walk in one dimension for three different types of the jump rate and
iscuss non-diffusive to diffusive transition for an extended percolation model. The random walk in three dimensions is
nvestigated in Section 4 and results are discussed in Section 5,

. Model and the method of analysis

I consider a random walk on objects, where the position of object n is denoted by rn which is called as site rn for
simplicity. The transition probability P(rn, t|r0, 0) of the random walker obeys

∂P(rn, t|r0, 0)
∂t

= −

∑
m

w(|rm − rn|)P(rn, t|r0, 0) +

∑
m

w(|rn − rm|)P(rm, t|r0, 0), (1)

where P(rn, t|r0, 0) is the transition probability that a random walker is at the site rn at time t when it started r0 at time
t = 0, and w(|rm − rn|) is the jump rate of a random walker from site rn to site rm. I assume that w(|rm − rn|) is a function
of the distance between rn and rm. Usually, w(r) is assumed to be nonzero within a certain distance. For example, the
percolation process on lattices is modeled by jumps of a random walker within nearest neighbor sites. In this paper, I
introduce an extended percolation model in which a random walker can make a longer jump with smaller rate beyond
the limited distance used for the standard percolation model.

The diffusion constant D is given by

D = lim
u→0

u2

2d

∑
m

⟨(rm − r0)2P̃(rm, u|r0)⟩, (2)

here

P̃(rm, u|r0) =

∫
∞

0
P(rm, t|r0, 0)e−utdt (3)

s the Laplace transform of the transition probability P(rm, t|r0, 0), d is the dimension of the space and ⟨· · · ⟩ denotes an
nsemble average over the random distribution of sites. It is known that the Laplace transform P̃(rn, u|r0) obeys

uP̃(rn, u|r0) − P(rn, 0|r0, 0) = −

∑
m

w(|rm − rn|)P̃(rn, u|r0) +

∑
m

w(|rn − rm|)P̃(rm, u|r0). (4)

In order to obtain the ensemble average of P̃(rm, u|r0), I employ the coherent medium approximation [8]. In this
pproximation, a coherent transition probability P̃c(rn, u|r0) is introduced which obeys the same equation as Eq. (4) with
(|rm − rn|) replaced by a coherent jump rate wc(u)

uP̃c(rn, u|r0) − P(rn, 0|r0, 0) = −

∑
m

wc(u)P̃c(rn, u|r0) +

∑
m

wc(u)P̃c(rm, u|r0), (5)

nd the coherent jump rate wc(u) is self-consistently determined by requiring

P̃c(rn, u|r0) = ⟨P̃(rm, u|r0)⟩. (6)

In order to apply the coherent medium approximation to the present problem, I exploit a technique for positionally
isordered systems in which the original problem is mapped onto a lattice problem with random jump rates [8,10]. I first
ivide the space around a site into z equivalent cones and assume that a random walker makes a jump to the adjacent
ite in one of the z cones. Within this approximation, the normalized diffusion constant is given by

D
=

wc(0)
, (7)
D0 w0

2
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Fig. 1. The dependence of jump rate w(x) on distance x for different models. (1) Eq. (12) with ϵ = 0.01, (2) Eq. (14) with α = 5 and (3) Eq. (16)
with xr/x0 = 3.

where D0 and w0 are the diffusion constant and jump rate of a reference regular system and Eq. (6) for wc(0) reduces
to [8]

2
zwc(0)

=

∫
∞

0

N(r)dr
( z2 − 1)wc(0) + w(r)

. (8)

Here N(r) represents the distribution function of the distance between adjacent neighbors in a cone. In three dimensions,

N(r) =
4πr2n

z
exp

(
−

4πr3n
3z

)
(9)

when sites are distributed randomly with density n. In Eq. (7), the scale of the length of the system under consideration
is assumed to be the same as that of the reference system since it does not play any significant role here.

3. Extended percolation in one dimension

In one dimension, z is set to z = 2 in Eq. (8) and the self-consistency equation for the coherent jump rate wc reads as

1
wc(0)

=

∫
∞

0

N(x)dx
w(x)

, (10)

nd the distribution function N(x) becomes

N(x) = ne−nx. (11)

n this section, I investigate several different forms of w(x) which is considered as a percolation model with long range
onnection, and discuss possibility of a diffusive to non-diffusive transition.

.1. Simple percolation model

As the simplest model, I first consider a transition probability

w(x) =

{
w0 (when 0 ≤ x ≤ x0)
ϵw0 (when x > x0),

(12)

here the percolation process corresponds to the ϵ → 0 limit. Curve (1) in Fig. 1 shows x dependence of w(x) given by
q. (12).
It is straightforward to obtain the diffusion constant from Eqs. (7) and (10)∼(12). I find

D
=

1
1−ϵ −nx

, (13)

D0 1 +

ϵ
e 0

3
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Fig. 2. The scaled diffusion constants of a simple percolation model Eq. (12) are shown as functions of the scaled density for ϵ = 10−2, 10−3, 10−4 .
Note D = 0 for the percolation limit ϵ = 0.

and Fig. 2 shows the dependence of D/D0 on the scaled density nx0 for ϵ = 10−2, 10−3, 10−4. As expected, the diffusion
constant is identically zero in the percolation limit ϵ = 0. When ϵ is finite, the diffusion constant is given by a sigmoid
function whose inflection point is at nx0 = − ln[ϵ/(1 − ϵ)].

3.2. Extended percolation model

I define an extended percolation model by a jump rate

w(x) =

{
w0 (when 0 ≤ x ≤ x0)
w0

( x0
x

)α (when x > x0 ), (14)

with α > 0, whose x dependence is shown by curve (2) in Fig. 1 for α = 5. Namely, in this model, the range of jump
beyond x0 decays as a power-law function with exponent −α. From Eqs. (7), (10), (11) and (14), I find

D
D0

=
1

1 − e−nx0 + (nx0)−αΓ (α + 1, nx0)
, (15)

here Γ (s, x) ≡
∫

∞

x e−t ts−1dt is the upper incomplete Gamma function. Fig. 3 shows the nx0 dependence of the diffusion
onstant for α = 1, 5, 10, 20.
The diffusion constant becomes identically zero at α = ∞, since α = ∞ corresponds to the percolation limit.

3.3. Logistic-type model

I consider a smooth function for the jump rate represented by a kind of the logistic curve

w(x) = w0
exr /x0 − 1

exr /x0 + ex/x0 − 2
, (16)

hich satisfies w(0) = w0, w(xr ) = w0/2 and w(∞) = 0. Curve (3) in Fig. 1 shows x dependence of w(x) given by Eq. (16)
or xr/x0 = 3. The diffusion constant is given by

D
D0

= 1 −
1

1 + (e−xr /x0 − 1)(nx0 − 1)
. (17)

ig. 4 shows the diffusion constant as functions of nx0 for xr/x0 = 1.1, 2, 3. It is apparent that there is a non-diffusive to
diffusive transition at nx0 = 1. Since D/D0 ≃ (e−xr /x0 − 1)(nx0 − 1) when nx0 ∼ 1, the critical exponent of the diffusion
constant is unity.
4
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Fig. 3. Scaled diffusion constants for an extended percolation model Eq. (14) are shown as functions of the scaled density for α = 1, 5, 10, 20. Note
= 0 for the percolation limit α = ∞.

Fig. 4. Scaled diffusion constants for a logistic-type model Eq. (16) are shown as functions of the scaled density for xr/x0 = 1.1, 2, 3.

. Extended percolation in three dimensions

.1. Extended percolation model

I consider an extended percolation model in three dimensions where sites are distributed randomly with density n in
a three dimensional space and the jump rate w(r) is given by

w(r) =

{
w0 (when 0 ≤ r ≤ r0)
w0

( r0
r

)α (when r > r0 ). (18)

Self-consistency Eqs. (8) and (9) for wc with Eq. (18) are solved numerically. Fig. 5 shows the dependence of the scaled
diffusion constant D/D0 on the scaled density (4πr30/3)n for α = 10 and ∞, where z = 6 is used as an example. There are
o percolation transition for α < ∞. The case α = ∞ is the simple percolation model, the diffusion constant of which is
5
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Fig. 5. The dependence of the scaled diffusion constant on the scaled density for the extended percolation model for α = 10, ∞. Note α = ∞

orresponds to the standard percolation model.

iven by

D
D0

= 1 −
z

z − 2
exp

(
−

4πr30
3z

n
)

(when n > nc), (19)

here the critical percolation density nc is given by

4πr30
3

nc = z ln
z

z − 2
(20)

hen z = 6, 4πr30
3 nc = 2.43.

.2. Super exponential decay model

I consider the jump rate w(r) given by

w(r) =

{
w0 (when 0 ≤ r ≤ r0)
w0 exp{−[k(r − r0)]β} (when r > r0 ). (21)

ig. 6 represents the dependence of the scaled diffusion constant D/D0 on the scaled density (4πr30/3)n for β = 1, 4, where
r0 = 3 and z = 6 are used. Apparently, there is a non-diffusive to diffusive transition for β = 4. In fact, a non-diffusive
o diffusive transition exists when β ≥ 3.

. Discussion

I have studied random walks on objects distributed randomly in a space where a random walker can make long range
umps and obtained characteristic behavior of the diffusion constant within the coherent medium approximation. As for
he distance dependence of the jump rate, I investigated different types of extended percolation models. It is shown that
non-diffusive to diffusive transition exists in certain types of the jump rate function in one and three dimensions.
The self-consistency equation, Eq. (8), supports a solution wc(0) = 0 only when∫

∞

0

N(r)dr
w(r)

= ∞. (22)

herefore, in one dimension, the non-diffusive to diffusive transition exists when the jump rate function exhibits
xponential or faster decay in the long distance limit [10]. In d-dimensional systems, there are no non-diffusive states
nless the jump rate function decays faster than e−rd .
In this paper, I focused on the diffusion constant representing long time behavior in order to introduce a new random

alk model. It is an interesting problem to observe the time dependence of the mean squared displacement and the
6
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Fig. 6. The dependence of the scaled diffusion constant on the scaled density for the super Gaussian decay model for β = 1, 4.

robability distribution of a walker, which will be studied theoretically and numerically in the future. It should also be
entioned to that while a walker makes jumps among fixed sites in the present analysis, nodes of the mesh network

ormed by phones moves in the space. Therefore, in order to analyze the nature of the mesh network, one needs to study
random walk in which a walker makes jumps among moving sites. The situation is similar to the problem of diffusion
n diffusing particles [11,12]. Generalization of the present work in this direction will also be pursued in the future.
It is interesting to note that the continuous limit of the present random walk will reduce to a diffusion processes in

hich the diffusivity depends on position and time [13]. Investigation of the mesh network in this direction will also be
ursued in the future. It is also expected that information about the mesh network will give some insights in random
alks in a highly complex structure like the free energy landscape [2].
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