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Abstract
Aging phenomena have been observed in many non-equilibrium systems such as polymers and
glasses, where physical properties depend on the waiting time between the starting time of
observation and the time when the temperature is changed. The aging is classified into two types
on the basis of the waiting time dependence of an instantaneous relaxation time: When the
relaxation time is always an increasing function of the waiting time, the aging is called Type I
and when it depends on the protocol of the temperature change, the aging is called Type II.
Aging of a random walk in three dimensions is investigated when the free energy landscape
controlling the jump rate responds to temperature change with a delay. It is shown that the
intermediate scattering function of the random walk model exhibits Type II aging. It is also
shown that the relaxation time of the free energy landscape can be deduced from the waiting
time dependence of the instantaneous relaxation time.

Keywords: non-equilibrium system, aging, waiting time dependence, free energy landscape,
instantaneous relaxation time
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1. Introduction

Many systems are known to stay in a non-equilibrium state for
a long time due to the separation of slow dynamics and fast
dynamics, which include glass forming materials, high poly-
mers and spin glasses. In the non-equilibrium systems, phys-
ical properties show delayed response to a sudden change in
temperature and depend on the observation time. This phe-
nomenon is called aging [1–5]. Conventionally, the aging is
understood by the time required for the probability distri-
bution of microstates to be re-established and is represen-
ted by a relaxation function. Well-known relaxation functions
are the exponential function exp(−t/τ) (the Debye relaxa-

tion) and the stretched exponential function exp
{
−(t/τ)β

}
(the Kohlrausch–Williams–Watts or KWW relaxation) where
β < 1 and τ are positive constants supposed to be intrinsic
parameters of the system. The difference between these func-
tions is in their waiting time dependence. Namely, when

the temperature is changed at time t= 0 and the observa-
tion is started after a waiting time tw, the relaxation time
of the KWW relaxation is an increasing function of the
waiting time. Some of experimental data for relaxation can
be fitted by a power-law function [6]. The instantaneous
relaxation time of the power-law relaxation defined at a
waiting time is also an increasing function of the waiting
time. The Debye relaxation does not show the waiting time
dependence.

It has been argued that trap models with a power law distri-
bution of jump rates give rise to the slow relaxation following
the KWW relaxation [7, 8] or a power-law decay [8] of the
relaxation function.

Kob and Barrat [9] investigated by molecular dynamics
simulation the waiting time dependence of the intermediate
scattering function for a binary Lennard-Jones liquid in the
super-cooled region, when the system was quenched at t=
0 (T-down protocol) and the observation was started after a
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waiting time tw. They showed that the intermediate scattering
function depends strongly on the waiting time and the struc-
tural relaxation time becomes longer as the waiting time is
increased. This behavior has been considered to be the essence
of slow dynamics in which the relaxation time is an increasing
function of the waiting time.

Suarez et al [10] investigated out-of-equilibrium dynam-
ics of a fractal model gel by molecular dynamics simulation
when the temperature is raised from zero (T-up protocol). They
reported that when the temperature is low, the dynamics slows
downwith increasingwaiting time and that when the temperat-
ure rise is large, the relaxation becomes faster with increasing
waiting time, which is attributed to the waiting time depend-
ence of exponent β of the stretched exponential relaxation
function due to breaking of the fractal network.

These two computer simulations raise an important ques-
tion if the waiting time dependence of aging depends on the
protocol of temperature control, and if it does it is important to
find out physics behind the waiting time dependence of aging.

Conflicting protocol dependences of aging have been repor-
ted for spin glasses. On one hand, Granberg et al showed that
the T-drop experiment requires a longer waiting time to estab-
lish the same correlation length than the T-up experiment [11].
On the other hand, Lederman et al showed that the T-up and
T-down experiments yield the same waiting time dependence
of the relaxation of the thermo-remanent magnetization [12].

For structural glasses, the protocol dependence has been
found for the volume and mechanical behavior of the epoxy
[13] and for the dielectric relaxation of a glass-forming
liquid [14].

The slow structural relaxation in the non-equilibrium sys-
tems can be described by the time evolution of a representat-
ive point on the free energy landscape (FEL) determined by
the fast motion [15]. In the FEL approach to non-equilibrium
systems, the FEL is defined as a function of temperature,
and when the temperature is modified, the FEL will be re-
established with time delay. In fact, it has been shown that
such time dependence of the FEL can explain the observation
in the temperature-modulation spectroscopy [16, 17].

In this paper, I first discuss general properties of a relax-
ation function, a two-time relaxation function and show that
the aging can be classified into two types, Type I and Type
II, on the basis of the protocol dependence of the instantan-
eous relaxation time. I investigate how the delayed response
of the FEL to temperature change manifests itself in the wait-
ing time dependence of aging. As a model system, I study the
intermediate scattering function of a random walk model in
three dimensions and show that the delayed response of the
FEL gives rise to Type II aging. I also show that the relaxa-
tion time of the FEL can be deduced from the waiting time
dependence of aging.

I organize this paper as follows. I first explain basic con-
cepts including aging and definitions of relevant quantities in
section 2. I also define Type I and Type II agings, where the
latter is characterized by the protocol dependence of aging.

In section 3, the free energy landscape approach is explained
briefly and a model for delayed response of the FEL to a
temperature change is introduced. Exploiting the formalism, I
investigate the intermediate scattering function for a random
walk model in three dimensions in section 4. Section 5 is
devoted to discussion.

2. Conventional description of relaxation and aging

I consider a temperature change:

T=

{
T0 (t< 0)
T1 (t⩾ 0) ,

(1)

where T0 > T1 and T0 < T1 denote the T-down and the T-up
protocol, respectively.

When the temperature follows equation (1), a physical
quantity F (t) relaxes from an equilibrium value F (0) = F0

for t< 0 to a new equilibrium value F (∞) = F1 in the limit
of t=∞. The time dependence of the physical quantity F (t)
is conventionally written as:

F (t) = F1 +(F0 −F1)Ψ(t) , (2)

where Ψ(t) = [F (t)−F1]/ [F0 −F1], which satisfies
Ψ(0) =−1 and Ψ(∞) = 0, is called the relaxation function.

Using the relaxation function Ψ(t), I define a relaxation
exponent function ψ (t) by:

ψ (t) =− lnΨ(t) (3)

and an instantaneous relaxation time τ (t) by:

τ (t) =

[
dψ (t)
dt

]−1

. (4)

When Ψ(t) and ψ (t) depend on time, the relaxation is said
to show aging. Exploiting the time dependence of the instant-
aneous relaxation time τ (t), I classify the aging into two types,
Type I and Type II: when the sign of dτ (t)/dt does not depend
on the protocol of temperature change, the aging is called Type
I, and when it depends on the protocol, the aging is called
Type II.

In aging experiments, an observation is often started at a
waiting time tw when the temperature is changed at time t= 0
and the physical quantity F (tw+ t ′) at t= tw+ t ′ is analyzed
as a function of tw and t ′. Then, a two-time relaxation function
Ψ(t ′, tw) can be defined by:

F (tw+ t ′) = F1 +(F (tw)−F1)Ψ(t ′, tw) , (5)

or:

Ψ(t ′, tw) =
F (tw+ t ′)− F1

F (tw)−F1
, (6)
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and it can be shown from equation (2) that:

Ψ(t ′, tw) =
Ψ(tw+ t ′)
Ψ(tw)

(7)

which satisfies Ψ(0, tw) = 1 and Ψ(∞, tw) = 0. Namely, the
two-time relaxation functionΨ(t ′, tw) is related toΨ(t) at t=
tw and t= tw+ t ′.

I define a two-time relaxation exponent function ψ (t ′, tw)
and a two-time instantaneous relaxation time τ (t ′, tw):

ψ (t ′, tw) =− lnΨ(t ′, tw) , (8)

τ (t ′, tw) =

[
dψ (t ′, tw)

dt ′

]−1

. (9)

From equation (7), it can be shown that:

τ (t ′, tw) = τ (tw+ t ′) (10)

holds. Therefore, the type of aging can be identified by the
protocol dependence of dτ (0, tw )/dtw as well.

As an example, I analyze the KWW relaxation func-

tion Ψ(t) = exp
{
−(t/τ)β

}
with β < 1. It is apparent from

equations (3) and (4) that the relaxation exponent function is
given by:

ψ (t) =
( t
τ

)β

, (11)

and, when β and τ do not depend on time, the instantaneous
relaxation time is given by:

τ (t) =
τβ

βtβ−1
. (12)

Therefore, when β and τ are constants, the instantaneous
relaxation time is always an increasing function of time. Since
dτ (tw)/dtw > 0, the KWW relaxation with constant β and τ
belongs to Type I aging. The two-time instantaneous relaxa-
tion time for the KWW relaxation with constant β and τ is
given by:

τ (t ′, tw) =
τβ

β(tw+ t ′)β−1 , (13)

and therefore

τ (0, tw) =
τβ

βtwβ−1 . (14)

The type of aging thus can be identified by observing the
protocol dependence of dτ (0, tw)/dtw. For the Debye relaxa-
tion exp(−t/τ) corresponding to the case β = 1 of the KWW
relaxation, the effective relaxation time is equal to τ and, there-
fore, if τ is a constant, the Debye relaxation shows no waiting
time dependence of aging.

A power-law functionΨ(t) = (τ/t)α (α > 0) is sometimes
used to represent the behavior of relaxation [6, 8]. It is easy to
confirm that if α and τ do not depend on time, the power-law
relaxation belongs to Type I aging.

3. Free energy landscape and its relaxation

In many non-equilibrium systems such as super-cooled
liquids, it is known that fast and slowmodes of atomic dynam-
ics are well separated, and that the free energy can be defined
from the fast dynamics as a function of average atomic con-
figuration. The dynamics of a representative point on the FEL
is described by a stochastic Langevin equation with the FEL
as the potential function [15]. One can use a reduced repres-
entation of the FEL, focusing only on the local minima of the
FEL [15]. It should be emphasized that the essential part of the
results in this paper does not depend on the representation. In
the reduced representation, I denote by P(n, t) the probability
that the system is in basin n at time t and by f(n) a physical
quantity of basin n. Then the observed value of the physical
quantity is given by:

F (t) =
∑
n

f(n)P(n, t) . (15)

The time evolution of probability function P(n, t) is
assumed to be governed by a master equation:

∂P(n, t)
∂t

=
∑
m̸=n

Wn,mP(m, t)− Wn,nP(n, t) , (16)

where Wn,m is the transition rate from basin m to basin n and
Wn,n =

∑
m ̸= nWm.n. The dynamics is described by the trans-

ition rate matrix in equation (16), whose element can be typ-
ically written as:

Wn,m = w0exp
(
−∆Un,m (T)

kBT

)
, (17)

where ∆Un,m (T) is the barrier height between two basins m
and n and w0 is an attempt frequency determining the time
scale of the walk. Note that P(n, t) and hence F (t) depend
on temperature and that the total probability

∑
n P(n, t) is

conserved.
The FEL depends on temperature by its definition, and it

is natural to assume that the FEL will respond with delay to a
temperature modulation. The temperature dependence of the
FEL has been incorporated into the analysis by various con-
cepts. Here, I exploit the simplest form that the jump rate (17)
responds to the temperature change with delay:

W(t) =

{
W0 (t< 0)

W1 +(W0 −W1)e−t/τF (t⩾ 0)
, (18)
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where W0 ≡ w0exp
(
−∆Un,m(T0)

kBT0

)
and W1 ≡ w0exp(

−∆Un,m(T1)
kBT1

)
.

One can think of different models for the relaxation of the
FEL like a delayed response of the barrier height or the fict-
ive temperature [18–20]. It is easy to compare these mod-
els and confirm that the time dependence of the jump rate
in these models are almost identical. Therefore, I exploit
the simple model (18) for the description of the relaxa-
tion of the FEL in the following discussion. It should be
emphasized that the essential results in the present paper
do not depend on models for the delayed response of
the FEL.

4. Aging of intermediate scattering function and its
waiting time dependence

In order to investigate the aging of the intermediate scatter-
ing function, I consider a random walk model on a cubic lat-
tice. I denote by P(s, t) the probability that a random walker
is at site s at time t when it started from the origin at time
t= 0 and assume that it obeys the simple random walk master
equation

∂P(s, t)
∂t

=W(t)

[∑
d

P(s+ d, t)− zP(s, t)

]
(19)

where d denotes a nearest neighbor site of site s and z is the
coordination number of the lattice. Here,W(t) is the jump rate
of the randomwalker between two adjacent sites which reflects
the barrier height produced by the FEL. For the temperature
control equation (1), I assume thatW(t) relaxes as:

W(t) =W1 +(W0 −W1)e−t/τF , (20)

which satisfies W(0) =W0 and W(∞) =W1. Equation (16)
can be solved analytically by introducing a scaled
time t̃(t);

t̃(t) =

tˆ

0

W(t ′)dt ′, (21)

namely

d̃t=W(t)dt. (22)

Then, equation (19) reduces to:

∂P(s, t̃)
∂ t̃

=
∑
d

P(s+ d, t̃)− zP(s, t̃) . (23)

I focus on the aging of the self-part of the intermediate scat-
tering function FS (k, t) which is defined by:

FS (k, t) =
∑
s

eik·sP(s, t) , (24)

where k is a wave vector. It is easy to show thatFS (k, t) obeys:

∂FS
(
k, t̃

)
∂ t̃

=−γFS
(
k, t̃

)
, (25)

where:

γ (k) = z−
∑
d

eik·d . (26)

Therefore, FS
(
k, t̃

)
is given by:

FS
(
k, t̃

)
= FS (k,0)e−γ(k)̃t (27)

and the two-time correlation function C(t ′, tw) =
FS (k, tw+ t ′)/FS (k, tw) is written as:

C(t ′, tw) = exp
[
−γ (k)

{̃
t(tw+ t ′)− t̃(tw)

}]
. (28)

Recalling the scaled time t̃(t) defined by equation (21), I
find:

∂FS (k,~t) = FS (k,0)exp [−γ (k) {W1t+(W0 −W1)

× τF (1− e− t/τF)}] (29)

and:

C
(
t ′, tw

)
= exp

[
− γ

(
k
) {

W1t ′ +
(
W0 −W1

)
× τFe−tw/τF

(
1− e−t ′/τF

)}]
. (30)

Figure 1 shows the t ′ and tw dependence of C(t ′, tw) for
the temperature control: (a) T-down protocol and (b) T-up
protocol. Apparently, the correlation function shows different
waiting time dependence for T-up and T-down protocols.

The instantaneous two-time relaxation time τ (t ′, tw) is
given by:

τ (t ′, tw) =−
[
∂ lnC(t ′, tw)

∂t ′

]−1

. (31)

As shown in figure 2, τ (0, tw) is an increasing function of
tw for T-down protocol and a decreasing function of tw for T-up
protocol.

Since the instantaneous two-time relaxation time τ (0, tw)
can be increasing or decreasing as tw is increased, the aging is
of Type II.

It should be mentioned that since the initial slope of
τ (0, tw) is determined by the relaxation time τF of the FEL,
τF can be deduced from the tw dependence ofτ (0, tw) .
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Figure 1. The t ′ and twdependence of C(t ′, tw) for the temperature control: (a) T-down protocol (W1/W0 = 0.5) and (b) T-up protocol
(W1/W0 = 2.0), where γ (k)W0τF = 100.
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Figure 2. The tw dependence ofτ (0, tw) for T-up protocol
(W1/W0 = 2.0) and T-down protocol (W1/W0 = 0.5), where
γ (k)W0τF = 100.

5. Discussion

In this paper, I investigated the aging phenomenon on the basis
of the free energy landscape theory of non-equilibrium sys-
tems and showed that (a) the aging can be classified into two
types depending on the protocol dependence of the instantan-
eous relaxation time, (b) the relaxation of the FEL manifests
itself as type II aging, (c) the instantaneous relaxation time can
be either increasing or decreasing function of the waiting time
and (d) the relaxation time of the FEL can be deduced from the
waiting time dependence of the instantaneous relaxation time.

The most common relaxation function in non-equilibrium
systems is the KWW function. The KWW relaxation with con-
stant β and τ is said to represent the slow relaxation, in which
the instantaneous relaxation time is always an increasing func-
tion of the waiting time. Therefore, in order to explain the
observation in which the instantaneous relaxation time for T-
up protocol is an increasing function of the waiting time, a
waiting time dependence of exponent β has been considered
[10]. The waiting time dependence of β and τ of the KWW
function may be understood by the relaxation of the FEL. It is
clear that the opposite dependence of the instantaneous relax-
ation time on the waiting time for T-up and T-down protocols
can be explained by the delayed response of the FEL.

The present result indicates that the slow relaxation may
well be fitted by:

Φ(t) = Φ(0)e−̃t(t) (32)

with t̃(t) = A
[
W1t+(W0 −W1)τF

(
1− e−t/τF

)]
, where A is

a positive constant. In fact, it is straightforward to confirm that
equation (32) behaves almost identical to the KWW relaxation
function.

It should be emphasized that the present formalism is very
much robust and can be applied to any other aging phenom-
ena, including the dielectric relaxation, the dielectric response
[14, 21, 22] and the order parameter dynamics for the Landau
model [23].
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