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Recent precise measurement of the mechanocaloric properties of rubber exhibits non-monotone dependence of the
temperature on tension when it is applied adiabatically. The unusual mechanocaloric effect is explained on the basis of a
modified folding ruler model in which an attractive interaction exists between adjacent folded units. It is shown that the
non-monotone behavior is caused by competition between energetic and entropic effects of the rubber.

An adiabatic stretch of rubber is known to raise its
temperature. The physics behind this mechanocaloric effect
has been understood by the entropy of rubber. The entropy
of rubber is large when the rubber is at rest and becomes
small when it is stretched. Therefore, when a stretching
force is applied adiabatically, the temperature increases to
compensate the loss of entropy due to stretching. The
simplest model to explain this physics is the folding ruler
model where the ruler is placed in one dimension and each
unit of the ruler can point either plus or minus direction
freely.1)

Recently, Matsuo et al. devised a new apparatus for
precise measurement of mechanocaloric properties of rubber,
and reported that, when the applied force is increased
adiabatically from zero, the temperature of rubber decreases
initially before it increases.2)

In this letter, I present a modified folding ruler model
which explains the unusual mechanocaloric effect of rubber.
The model consists of N identical units which are connected
to its neighbors at their end points and placed on one
dimensional space as shown in Fig. 1. Each unit can point
either plus or minus direction. The left side of the first unit is
fixed at the origin and the length of the system is given by the
position of the right side of the N-th unit. The model can be
mapped onto the Ising model. To this end, I assign spin
variable Si to the i-th unit, where Si ¼ þ1 and −1 denote the
plus and minus directions, respectively. The length L of the
model rubber is given by

L ¼ ‘
XN
i¼1

Si; ð1Þ

where ‘ is the length of a unit. I assume that a joint between
folded pair of units has an energy ε and the energy of a joint
connecting stretched pair of units is zero. Therefore, the
energy of the model rubber is given by

E ¼ "

2

X
i

ð1 � SiSiþ1Þ; ð2Þ

where I ignored the boundary effect. When a tension X is
applied at both ends, the T–P partition function YðT; X; NÞ is
given by1)

YðT; X; NÞ

¼
X

fSi¼�1g
exp � "

2kBT

X
i

ð1 � SiSiþ1Þ þ X‘

kBT

X
i¼1

Si

" #
;

ð3Þ

where T is the temperature and kB is the Boltzmann constant.
The expression for the partition function is essentially
equivalent to the canonical partition function for the Ising
model under an external field and the partition function can
readily be calculated by the transfer matrix formalism.3) The
Gibbs free energy GðT; X; NÞ is given by GðT; X; NÞ ¼
�kBT lnYðT; X; NÞ which is written, in the thermodynamic
limit, as

GðT; X; NÞ ¼ N"

2
� NkBT ln yðT; X; "Þ; ð4Þ

where

yðT; X; "Þ ¼ cosh
X‘

kBT
þ hðT; X; "Þ;

hðT; X; "Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2

X‘

kBT
þ e�

2"
kBT

r
:

The average length hLi ¼ �ð@G@XÞT;N and the entropy S ¼
�ð@G@T ÞX;N are then given by

hLi
N‘

¼
sinh

X‘

kBT

hðT; X; "Þ; ð5Þ

S

NkB
¼ ln yðT; X; "Þ

þ 1

hðT; X; "Þ
1

yðT; X; "Þ
"

kBT
e�

2"
kBT � X‘

kBT
sinh

X‘

kBT

� �
:

ð6Þ
It is easy to confirm that these expressions (4)–(6) reduce to
the well-known results when " ¼ 0.

In the following discussion, I focus on the case of " < 0,
which denotes that a folded pair is favorable compared to a
stretched pair, since the case of " > 0 shows similar behavior
to the system of no interaction " ¼ 0. Equation (5) represents
the equation of state which is shown in Fig. 2 for "=X0‘ ¼
�1. Here, X0 is a scale of tension and thus the energy is
scaled by X0‘. Figure 3 shows the temperature dependence
of the average length of the model rubber for X=X0 ¼
0:5; 1; 2 when "=X0‘ ¼ �1. For small tension, the average
length shows a maximum as a function of temperature.

Fig. 1. The folding ruler model of rubber.
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Figure 4 shows the temperature dependence of the entropy
of the model rubber for X=X0 ¼ 0; 0:5; 1; 2 when "=X0‘ ¼
�1, and Fig. 5 shows the tension dependence of the entropy
of the model rubber for kBT=X0‘ ¼ 0:2; 0:5; 1; 2 when
"=X0‘ ¼ �1.

Since the entropy change is given by

dS ¼ @S

@X

� �
T

dX þ @S

@T

� �
X

dT ð7Þ

the tension dependence of temperature for the adiabatic
process where dS ¼ 0 is determined by ð@S@XÞT and ð@S@TÞX.
Therefore, Figs. 4 and 5 indicate that the temperature for
small tension can be a non-monotone function. In fact, the
tension dependence of the temperature for the adiabatic
process can be obtained from Eq. (6). Figure 6 shows the
tension dependence of the temperature of the model rubber
for the adiabatic stretch at S

NkB
¼ 0:3; 0:5 when "

X0‘
¼ �1.

Now, using the present model, I analyze the experimental
data provided by Matsuo.4) Since the energy in Eq. (3) refers
to a single polymer chain, the external force must be that
acting on a single chain. Therefore, if the force X in Eq. (3) is
the force acting on rubber, then it must be replaced by X=M,
where the rubber is assumed to consist of M independent
polymer chains. Since the present model is extremely simple,
it is not obvious to relate parameters of the model, ε, S0, X0,
‘, M to properties of the rubber, and thus I took M"=X0‘,
S0=NkB, X0, X0‘=MkB as fitting parameters. Figure 7 shows
experimental data for the force dependence of temperature in
the adiabatic extension of rubber by solid circles4) and the
fitting of the data on the basis of the present model by the
solid curve. Here, parameters are set as follows:

M"=X0‘ ¼ �0:08; S0=NkB ¼ 0:58195;

X0‘=MkB ¼ 3750:4394 ½K�; X0 ¼ 400:9523 ½N�; ð8Þ

which were determined to get good fitting around the
minimum of the curve. It should be mentioned to that the
result is very much sensitive to the value of parameters and

Fig. 2. The equation of state of the model rubber when "=X0‘ ¼ �1.

Fig. 3. The temperature dependence of the length of the model rubber for
fixed tension X=X0 ¼ 0:5; 1; 2 when "=X0‘ ¼ �1.

Fig. 4. The temperature dependence of the entropy of the model rubber for
fixed tension X=X0 ¼ 0; 0:5; 1; 2 when "=X0‘ ¼ �1.

Fig. 5. The tension dependence of the entropy of the model rubber for
fixed temperature kBT=X0‘ ¼ 0:2; 0:5; 1; 2 when "=X0‘ ¼ �1.

Fig. 6. The tension dependence of the temperature of the model rubber for
the adiabatic processes at S=NkB ¼ 0:3; 0:5 when "=X0‘ ¼ �1.
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the numbers in Eq. (8) is a set of values which reproduced
a good fitting. It should also be noted that the temperature
change �T observed in experiments4) is in the order of mK at
the room temperature T0 � 300K and one needs relative
accuracy at least in the order of �T=T0 � 10�6 to fit the date.
It can easily be confirmed that these values are consistent to
material parameters.

The position of the minimum of the curve shown in
Fig. 7 is determined by ð@S=@XÞT ¼ 0, or equivalently by
ð@hLi=@TÞX ¼ 0 due to the Maxwell relation, and thus it is
given by

" ¼ �X‘ coth
X‘

kBT
: ð9Þ

The behavior of the temperature near X ¼ 0 can readily be
analyzed. Near X ¼ 0, the entropy is written as

SðTÞ
NkB

¼ ln 2 cosh
"

2kBT

� �
� "

2kBT
tanh

"

2kBT

� 1

2

X‘

kBT

� �2

1 þ "

kBT

� �
e

"
kBT : ð10Þ

Therefore, for the adiabatic process where the entropy is kept
at SðTÞ ¼ S0,

� 1

2

X‘

kBT

� �2

1 þ "

kBT

� �
e

"
kBT

¼ S0
NkB

� ln 2 cosh
"

2kBT

� �
� "

2kBT
tanh

"

2kBT

� GðTÞ: ð11Þ
Setting TðX ¼ 0Þ ¼ T0 and expanding the right hand side
GðTÞ around T ¼ T0, I find that GðT0Þ ¼ 0 and GðTÞ can be
expanded as

GðTÞ � G0ðT0ÞðT � T0Þ: ð12Þ
Therefore, the behavior of the temperature near X ¼ 0 is
expressed as

T � T0 � � 1

2G0ðT0Þ
X‘

kBT0

� �2

1 þ "

kBT0

� �
e

"
kBT0 : ð13Þ

It can be shown that the coefficient on the right-hand side is
negative, indicating that the T vs X curve is convex upward at
X ¼ 0.

Exploiting a modified folding ruler model of rubber, I
showed that the unusual mechanocaloric properties of rubber
can be explained by an interaction due to chemical bonding
that favors the folded structure between adjacent polymer
units. I also showed that the present simple model can
reproduce the experimental data as shown in Fig. 7. When
the tension is weak, the energetic effect is dominant and the
increased tension under an adiabatic condition reduces the
temperature and when the tension is increased further, the
entropic effect takes over and the temperature rises when the
tension is increased.
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Fig. 7. Fitting of the force dependence of the temperature in the adiabatic
extension of rubber by the present model. Solid circles are experimental data
provided by Matsuo4) and the solid curve is the theoretical prediction by
Eq. (6), where �T ¼ T � 299:65 and parameters are set as in Eq. (8).
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