MISC

2010年4月

Particle trajectories around a running cylinder or a sphere

FLUID DYNAMICS RESEARCH
  • Mayumi Shoji
  • ,
  • Hisashi Okamoto
  • ,
  • Takuya Ooura

42
2
記述言語
英語
掲載種別
DOI
10.1088/0169-5983/42/2/025506
出版者・発行元
IOP PUBLISHING LTD

The movement of fluid particles around a running cylinder or a sphere is considered. Particle trajectories viewed from a fixed object are contours of the stream function and well known in many cases. Here, we are concerned with trajectories viewed from the absolute coordinates where the object is moving. In 1870, Maxwell considered the problem in irrotational flow of inviscid fluid, and found that the trajectory of a particle is a curve of elastica having a self-intersection point. We consider here a similar problem in three-dimensional (3D) irrotational flow, 3D Stokes flow around a sphere and Brinkman's porous-media flow. In the 3D Stokes case, we found that the trajectories are unbounded and have no self-intersection. In the Brinkman case, we treated both flow around a cylinder and flow around a sphere: our numerical examinations revealed both self-intersecting and non-self-intersecting trajectories.

Web of Science ® 被引用回数 : 2

リンク情報
DOI
https://doi.org/10.1088/0169-5983/42/2/025506
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000274528300006&DestApp=WOS_CPL

エクスポート
BibTeX RIS