[展望・解説]

タイトル:小形垂直軸風車の密集配置の研究

英文タイトル: Study on Closely Arranged Vertical Axis Wind Turbines

著者名:原 豊*1、上代良文*2

著者名(英文名): Yutaka HARA、Yoshifumi JODAI

E-mail : hara@tottori-u.ac.jp, jodai@t.kagawa-nct.ac.jp

所属:*1 鳥取大学 工学部 機械物理系学科、*2 香川高等専門学校 機械工学科

1. はじめに

現在、世界においては大形風力タービンを用 いた風力発電が主力電源となりつつあり、特に 洋上風力発電は今後さらに伸びることが期待さ れている。商用の大形風力タービンのほとんど は水平軸風車(HAWT: Horizontal Axis Wind Turbine)であり、その後流には、らせん状の渦系 が形成され、速度欠損領域が風車直径の数倍に 及ぶ。そのため、多くの風車を整然と並べる洋 上ウインドファームに関して、全体の出力や効 率を向上するための最適な風車配置や制御方法 などの研究が最近盛んに行われている⁽¹⁾⁽²⁾。

一方、米国の Dabiri 教授は、アスペクト比の 大きい小形垂直軸風車(VAWT: Vertical Axis Wind Turbine)を密集配置したウインドファーム が、大形風力タービンのウインドファームより も、単位設置面積当り出力において1桁程度優 れるという予想を発表している⁽³⁾⁽⁴⁾。Fig. 1 に Dabiri 教授の研究における風車配置の1例を示 すが、互いに逆回転する近接した垂直軸風車ペ アが3×3の配置で並べられている。Dabiri 教授 の予想以来、垂直軸型の風力タービンあるいは 水力タービンを近接配置したロータ・ペアの特 性に注目した研究が増えている^(5)~7)。

鳥取大学では、小形垂直軸風車の低コスト化を目標に、これまでに過回転抑制機構を有したバタフライ風車(直径7m)を開発している⁽⁸⁾。現

Fig. 1 An arrangement of VAWTs in Dabiri's study

Fig. 2 Conceptual image of "Wind Oasis". This figure was processed and made from the photo of "field of breeding chickpea in ICARDA" of the following: https://www.flickr.com/photos/jircas/36555552042

在、さらなる低コスト化のためにバタフライ風 車の大型化の検討を行っているが、同時にバタ フライ風車のウインドファームと乾燥地農業を 組み合わせた"Wind Oasis"コンセプトも提案 している(Fig.2参照)。このコンセプトでは、小 形風車でソーラーシェアリングを行い、発電し た電力で揚水ポンプを動かして乾燥地で不足す る水を確保し、同時に乾燥地に住む人々の生活 用エネルギーの供給を行うことを想定している。 国内においても、低コストの小形風車の実用化 と土地を有効活用できる配置方法が明確になれ ば、景観等の問題から大形風車の建設ができな い場所などへの小形垂直軸風車のウインドファ ーム導入が期待できると考えている。

垂直軸風車の回転軸は主流風向と垂直である ため、回転中心まわりの循環の影響は、水平軸 風車が周囲流体に及ぼす影響とは異なったもの になる。鳥取大学と香川高専は、数年前より協 同し、いまだ十分に明らかになっていない複数 の垂直軸風車間の相互作用を明らかにする研究 および垂直軸風車の最適な密集配置を探索する 研究に取り組んできた。本稿では、これまでに 行ってきた研究の概要と知見の一部、および現 在進行中の研究内容について紹介する。

2. 近接配置の模型風車による風洞実験

3D プリンタで製作した垂直軸型ミニチュ ア・バタフライ風車の実験用模型の模式図をFig. 3 に示す。ロータ直径はD=50 mm、高さはH=43.4 mm である。翼弦長c=20 mm の対称翼型 の翼3枚から構成される。模型風車のトルク特 性は、鳥取大学において計測し、複数模型風車 の製作と風洞実験は香川高専で実施している。 Fig.4 は風洞実験の様子を示す写真であり、2つ の模型風車が5 mm の間隔(gap = 5 mm)で近接 配置されている。各風車は、回転開始補助と発 電機負荷の代わりとして使用する直流モータに 取付けてあり、モータの台座は、風車間距離と 主流に対するペア風車の方位角(アジマス角)の 両者に関して調整可能となっている。

ペア風車の主要な配置としては、Fig. 5 に示す5つがある。本研究では、主流(風速: U_a)に

Fig. 3 Size of a VAWT model for experiments

Fig. 4 Experimental setup of a pair of 3-D-printed VAWT models with a 5-mm gap (viewed from downstream)

対して並列に配置した場合について、2 つの風 車が同方向に回転する配置を(a) CO (co-rotation)、 互いに逆回転し、風車間で近接する翼が下流に 移動する配置を(b) CD (counter-down)、(b)とは逆 に近接する翼が上流に移動する配置を(c) CU (counter-up)と定義している。また、主流に対し て縦列配置(タンデム)とした場合は、2 つの風車

Fig. 5 Typical arrangements of a VAWT pair

が同方向回転する配置を(d) TCO (tandem co-rotation)、互いに逆方向回転する配置を(e) TIR (tandem inverse-rotation)と呼んでいる。

Fig.6は、主流風速を U_∞ = 10 m/s とした場合 の並列配置(CO, CD, CU)における各風車ロータ の回転数の gap 依存性を示す実験結果である。 Fig. 6 中の一点鎖線は単独ロータに相当する回 転数を示す。CO 配置では、各ロータの回転が 生み出す循環による影響で、Fig. 5 に示すロー タ2 (R2) がロータ1 (R1) よりも高い回転数 となる。実験ロータおよびモータには個体差が あるため、主流に対して対称となる CD および CU 配置においても 2 ロータの回転数には差が 生じているが、2 ロータの平均でみると、CD 配 置が CU 配置よりも高い回転数状態になること が実験結果として示されている。

Fig.7は主流風速をU_∞ = 12 m/s とした場合の TCO 縦列配置における各風車ロータの回転数 の gap 依存性を示す。上流側ロータ1の回転数 はほぼ一定であるが、下流側ロータ2はロータ 1 の後流に入っているため、gap が小さい場合に 大きな減速を生じている。gap が大きくなると 後流の回復によりロータ2の回転数は増加する

Fig. 6 Gap dependence of rotational speed in CO, CD, and CU arrangements ($U_{\infty} = 10$ m/s)

Fig. 7 Gap dependence of rotational speed in TCO arrangement ($U_{\infty} = 12 \text{ m/s}$)

が、gap/D=10 に相当する風車間隔になっても、 下流側ロータの回転数は上流側ロータの80%程 度で頭打ちとなっている。

主流風速を $U_{\infty} = 2$ m/s として実施したペア 風車まわりの流れの可視化の一例を Fig. 8 に示 す。この例は、風車間距離 gap = 10 mm の CU 配置であり、スモークワイヤー法によって主に ロータ前方の流脈線を可視化している(流れは 左から右向き)。Fig. 8 中に示す 2 つの白色の丸 印は、回転円柱における前方よどみ点に相当す る点を示している。可視化実験の結果、CU 配 置におけるよどみ点相当の位置が、他の配置 (CO, CD)に比べて中央線側に近づき、CU 相当 の回転円柱⁽⁹⁾と類似する結果が得られている。

Fig. 8 Photograph of smoke flow past two rotating turbines in CU arrangement with a gap = 10 mm $(U_{\infty} = 2 \text{ m/s})$

3. 同期現象

前節で述べたミニチュア風車の風洞実験では、 風車間距離が短い CD 配置において、2 つの風 車の回転数がほぼ同じ値になり、回転数も急増 するという特異な現象が観測された(Fig. 6 参 照)。可視化の結果、この状態では2 つの風車の 翼の位相が同期していることが確認された。

この位相的同期現象の詳細を明らかにするために、数値流体力学(CFD: Computational Fluid Dynamics)解析を実施した⁽¹⁰⁾。CFD 解析における風車モデルは、実験模型風車の赤道面に相当する2次元ロータであり、中央のハブを無視して3つの翼型のみが存在する(Fig.3参照)。計算ソルバーは商用のSTAR-CCM+を用いており、流体と物体の相互作用を考慮する(流速の変化に伴い回転数を変化させる)ため、STAR-CCM+が備えるDFBI(Dynamic Fluid/Body Interaction)モデルを乱流モデル(SST k-ω)とともに使用した。

 $U_{\infty} = 10$ m/s を仮定して CFD 解析された、gap = 10 mm (gap/D = 0.2) の CD 配置における流速 の x 成分の分布を Fig.9 に示す。Fig.9 からロー 夕間で増速していることがわかる。Fig. 10 は、 2 つのロータの角速度の時間変化であり、初期 値はわざと異なる値を設定してあるが、時刻 t=

Fig. 9 Distribution of *x*-component of flow velocity simulated by CFD in CD arrangement ($U_{\infty} = 10$ m/s)

Fig. 10 Variation in angular velocity of each rotor in CD arrangement with a $gap = 10 \text{ mm} (U_{\infty} = 10 \text{ m/s})$

Fig. 11 Schematic diagram of the mechanism of synchronization in phase of two rotor blades

2.0 sを過ぎた辺りから回転数がほぼ同じ値とな り、また R1 と R2 の角速度の大小関係が交互に 入れ替わりほぼ一定の周期で変動する。このと き、Fig. 9 でも示されているように、可視化実 験と同様に翼の位相的同期現象が確認できた。 ベルヌーイの定理を適用すれば、翼間で観測 された増速領域では圧力が相対的に減少する。 そのため、近接した2つの翼間では平均的に、 互いに引き寄せあう力が作用すると考えられ、 これが位相的同期の要因と推測される。この状 況を Fig. 11 に模式的に示す。

なお、CD 配置だけでなく、CU 配置において も、ロータ間距離が短い場合には位相的同期が 生じることが可視化実験および CFD 解析のい ずれにおいても確認できている。現在は、新し い研究協力者を得て、位相的同期の際に CFD で 観測された周期的変動の再現と周期が何に依存 するのかを説明をするための数理的解析モデル の構築を進めている⁽¹¹⁾。

4.16方位風向への依存性

前節で述べた DFBI モデルを用いた CFD 解析 は、Fig. 5 で示した 5 つの主要な配置における ロータ間距離を変えた場合についても適用され、 風洞実験結果と定性的に一致する結果を得てい る⁽¹²⁾⁽¹³⁾。さらに風向条件を拡張し、16 方位風向 に対するペア風車の特性依存性を CFD で解析 した⁽¹⁴⁾。Fig. 12 は 16 方位の定義を示している。 本研究では、左から主流が流入する場合を方位 角(アジマス)の基準とした。16 方位依存性に関 しては、2 つの風車が同方向に回転する場合を (a) CO (co-rotation)、互いに逆方向に回転する場 合を(b) IR (inverse-rotation)と呼んでいる。

Fig. 13 は 16 方位の CFD 解析における流れ場 の解析結果の一例を示す。この例は IR の状態で あり、gap = 50 mm (gap/D = 1.0)、アジマス角は $\theta = 22.5^\circ$ である。CFD 解析においては、主流方 向は左から右向きに固定し、2つの風車の位置 をロータ間の中心位置まわりに回転させて任意 のアジマス角状態を模擬している。

Fig. 14 に gap を 25, 50, 100 mm に変えた場合のペア風車の平均出力の風向依存性を示す。出

Fig. 12 Definition of wind direction in two rotor arrangements CO and IR

Fig. 13 Distribution of *x*-component of flow velocity simulated by CFD in the case of $\theta = 22.5^{\circ}$ and gap = 50mm ($U_{x} = 10$ m/s)

力は単独風車の出力で規格化されている。CO 状態では、出力分布は180°の回転対称性をもっ ており、R 状態では、θ=0°と180°を結ぶ線を 基準とした線対称性を持っている。ロータ間距 離が長い場合はCOとRにおける分布の差は小 さいが、短い場合は両者の違いが明瞭である。 一部に相違点があるが、風洞実験においても、 CFD 解析とほぼ一致する結果を得ている⁽¹⁴⁾。

5. 簡易モデルによる VAWT ウインドファームの シミュレーション解析手法の開発

本研究では、最終的に、多数の垂直軸風車を並べたウインドファームの最適配置を見出すこ

と、および密集配置の有効性を示すことを目的 としている。そのためには対象とするロータの 数を増やし配置も様々に変える必要がある。し かし、多数のロータを対象とする場合、風洞実 験やCFD 解析は、大幅な経費と時間的コストの 増加が予想される。そこで短い時間で計算が可 能な簡易モデルによる予測手法の開発に取り組 んでいる。現在取り組んでいる手法は、Dabiri 教授らが採用した解析⁽³⁾をベースとし、ポテン シャル流れに後流モデルを追加する方法を考え ている⁽¹⁵⁾。ポテンシャル流れ u_p(x, y)は、各ロー タの循環 Γ とブロッケージの効果を表す双極 子_uの大きさがわかれば、容易に短時間で計算 が可能である。ただし、ポテンシャル流れでは 損失が考慮されないため、単独ロータにおける CFD 解析の結果を用いて、後流の速度欠損を含 んだ流速分布を予め模擬可能な後流モデル du を作成しておき、式(1)でウインドファームにお ける流れ場 и、(x, y)を計算する。

$u_{\rm w}(x,y) = \{1 - \sum_{k=1}^{N} du_k\} u_{\rm p}(x,y)$ (1)

ここでNはウインドファームに含まれる風車ロ ータの全基数であり、k はその指定パラメータ である。Fig. 15 に提案する手法の概要図を示す。

水平軸風車の後流の速度分布として、トップ ハット形状からガウス形状に変化するスーパ ー・ガウス関数(Super-Gaussian function)を Shapiroら⁽¹⁶⁾が提案している。しかし、垂直軸風 車の後流においては、ロータ近傍領域で速度欠 損の両側に流速の増速域が見られた。本研究で は、その増速域を模擬するために、スーパー・ ガウス関数を修正したウルトラ・スーパー・ガ ウス関数(Ultra-Super-Gaussian function)を提案 した⁽¹⁵⁾。

Fig. 16 に提案モデルと CFD 解析の両者で得られた、単独ロータの後流における流速のx方

(b) x_n = (x - x_k)/D = 2.0
 Fig. 16 Wake profiles of an isolated single VAWT simulated by CFD and the proposed model

向成分のy方向分布の比較を示す。なお、垂直 軸風車では循環に起因する後流のy方向シフト δ_k も生じるため、提案した後流モデルには、後 流シフトの修正も含まれている。

 $U_{\infty} = 10$ m/s を仮定して提案モデルによって 予測した、gap = 50 mm の CO 状態(θ = 22.5°) における流速の x 成分の分布を Fig. 17 に示す。 Fig. 18 は、同じ風速条件で 16 方位の風速に対 して予測した CO 状態にあるペア風車の規格化 出力の風向依存性を示す。比較のため、CFD の 解析結果 (Fig. 14(a), gap/D=1.0) も破線で示し てある。特定の角度 (θ =45°, 112.5°, 225°, 292.5°) において、簡易モデルの計算結果は CFD の結果 と差が大きいが、それ以外では、7%以下の誤差 で一致している。現状では x 方向の速度成分の みを考慮しており、y 方向速度成分は考慮して いない。今後、y 方向成分も考慮するなどして 改良を行う予定である。条件にも依るが、1 つ の条件に対して、CFD 解析が計算に数日要する のに対して、提案モデルでは、約9秒以内で計 算が終了する。精度と計算速度を向上すること が今後の課題である。

Fig. 17 Distribution of x-component of flow velocity predicted by the proposed model in the case of CO condition with $\theta = 22.5^{\circ}$ and a gap = 50 mm

Fig. 18 Wind direction dependence of the power of a VAWT pair in CO condition (gap/D = 1.0)

6. おわりに

本稿では、小形垂直軸風車の密集配置に関す る風洞実験、CFD 解析、簡易モデルによる計算 について紹介をした。また、近接した翼間の位 相的同期現象の発見とその考察についても述べ た。本稿で述べた研究はまだ途上である。垂直 軸風車は、水平軸風車に比べて実用化されてい る事例が少ないが、本研究の成果が、将来の小 形垂直軸風車のウインドファーム実現に少しで も役立つことを期待したい。

[謝辞]

本稿で解説した研究は JSPS 科研費 JP18K05013 および鳥取大学国際乾燥地研究教 育機構(IPDRE)の研究プロジェクトとして実施 している。

〈参考文献〉

- Göçmen, T. · 他 5 名, Wind Turbine Wake Models Developed at the Technical University of Denmark: A Review, Renewable and Sustainable Energy Reviews, Vol. 60 (2016), 752.
- (2) Kanev, S., On the Robustness of Active Wake Control to Wind Turbine Downtime, Enegies, Vol. 12 (2019), 3152.
- (3) Whittlesey, R. W., Liska, S., Dabiri, J. O., Fish Schooling as a Basis for Vertical Axis Wind Turbine Farm Design, Bioinsp. Biomim, Vol. 5(2010), 035005.
- (4) Dabiri, J. O., Potential Order-of-Magnitude Enhancement of Wind Farm Power Density via Counter-Rotating Vertical-Axis Wind Turbine Arrays, J. Renewable and Sustainable Energy, Vol. 3(2011), 043104.
- (5) Zanforlin, S., Nishino, T., Fluid Dynamic Mechanisms of Enhanced Power Generation by Closely Spaced Vertical Axis Wind Turbines, Renewable Energy, Vol. 99(2016), 1213.
- (6) De Tavernier, D. · 他4名, Towards the Understanding of Vertical-Axis Wind Turbine in Double-Rotor Configuration,

J. Physics: Conf. Series, Vol. 1037(2018), 022015.

- (7) Ma, Y. 他5名, Hydrodynamics Performance Analysis of the Vertical Axis Twin-Rotor Tidal Current Turbine, Water, Vol. 10(2018), 1694.
- (8) Hara, Y. · 他 12 名, Development of a Butterfly Wind Turbine with Mechanical Over-Speed Control System, Designs, Vol. 2(2018), 17.
- (9) Yoon H. S. · 他 3 名, Flow Characteristics of Two Rotating Side-by-Side Circular Cylinder, Computers & Fluids, Vol. 38(2009), 466.
- (10) 原・他5名,近接した2つの垂直軸風車における同 期現象,第25回日本流体力学会中四国・九州支部講演 会,(2020), No.3.
- (11) 原・他4名,近接した2つの垂直軸風車の同期現象
 とその数理的解析,日本機械学会第98期流体工学部
 門講演会,(2020),●●●.
- (12) 山本・原・上代,近接した2つの垂直軸風車の動的 相互作用に関する数値解析,日本機械学会中国四国支 部第57期総会・講演会,(2019),604.
- (13) 原・他3名,2つの垂直軸風車のタンデム配置に関する数値シミュレーション、日本機械学会 2019 年度年次大会、(2019)、J05325.
- (14) 翁長・原・上代、16 方位風向分布に対する垂直軸風 車ペアの平均出力解析、日本機械学会 2020 年度年次 大会、(2020), J05309.
- (15) ブラナロ・原・上代,2次元垂直軸風車の後流速度分 布を模擬するモデルの提案,日本流体力学会年会2020, (2020),●●●.
- (16) Shapiro, C. R. 他3名, A Wake Modeling Paradigm for Wind Farm Design and Control, Energies, Vol. 12(2019), 2956.