KATO Keiichi

J-GLOBAL         Last updated: Mar 29, 2019 at 03:10
 
Avatar
Name
KATO Keiichi
Affiliation
Tokyo University of Science
Section
Tokyo University of Science, Faculty of Science Division I, Department of Mathematics
Degree
Doctor(Mathematical Sciences)(The University of Tokyo)

Research Interests

 
 

Research Areas

 
 

Academic & Professional Experience

 
1990
 - 
1996
Research Associate, Faculty of Science, Osaka University
 
1996
 - 
2001
Lecturer, Faculty of Science, Tokyo University of Science
 
2001
 - 
2007
Associate Professor, Faculty of Science, Tokyo University of Science
 
2007
 - 
2013
Associate Professor, Faculty of Science, Tokyo University of Science
 
2013
   
 
Professor, Faculty of Science, Tokyo University of Science
 

Education

 
 
 - 
1986
Department of pure and applied sciences, Faculty of Liberal Arts, The University of Tokyo
 
 
 - 
1988
Graduate School, Division of Science, The University of Tokyo
 

Awards & Honors

 
Sep 2006
Tetrahedron : Asymmetry Most Cited Paper(2003-2006) Award
 

Published Papers

 
Singularities for solutions to time dependent Schrödinger equations with sub-quadratic potential
Keiichi Kato and Shingo Ito
SUT Journal of Mathematics   50(2) 383-398   Dec 2014   [Refereed]
Keiichi Kato, Masaharu Kobayashi, Shingo Ito
JOURNAL OF FUNCTIONAL ANALYSIS   226(2) 733-753   Jan 2014   [Refereed]
Application of wave packet transform to Schrödinger equations. Harmonic analysis and nonlinear partial differential equations
Keiichi Kato, Masaharu Kobayashi, Shingo Ito
RIMS Kôkyûroku Bessatsu   B33 29-39   Jul 2012   [Refereed]
Remarks on Wiener amalgam space type estimates for Schrödinger equation. Harmonic analysis and nonlinear partial differential equations
Kato Keiichi, Masaharu Kobayashi, Shingo Ito
RIMS Kôkyûroku Bessatsu   B33 41-48   Jul 2012   [Refereed]
Remark on characterization of wave front set by wave packet transform
Keiichi Kato, Masaharu Kobayashi, Shingo Ito
OSAKA JOURNAL OF MATHEMATICS   54(2) 209-228   Apr 2017   [Refereed]

Misc

 
On the existence of solutions to the Benjamin-Ono equation with non differentiable initial data
Keiichi Kato
GAKUTO International Series―Mathematical Sciences and Applications   26 101-109   2006
Analytic smoothing effect for the Benjamin-Ono equations
Keiichi Kato, Takayoshi Ogawa, Elena Kaikina and Pavel Naumkin
数理解析研究所講究録   1204 77-84   Apr 2001
Analytic smoothing effect and single point conormal regularity for the semilinear dispersive type equations
Keiichi Kato and Takayoshi Ogawa
数理解析研究所講究録   1123 113-123   Jan 2000
Analyticity and smoothing effect for the Korteweg-de Vries equation
Keiichi Kato and Takayoshi Ogawa
数理解析研究所講究録   1047 47-55   May 1998
Gevrey singularities for nonlinear wave equations
Keiichi Kato
数理解析研究所講究録   937 39-45   Feb 1996

Conference Activities & Talks

 
Wave packet transform and Schrödinger equations with time dependent potentials
加藤圭一,伊藤真吾
Workshop on nonlinear partial differential equations   14 Mar 2015   
Wave packet transform and its application to PDE
Keiichi Kato, Masaharu Kobayashi, Shingo Ito
Harmonic analysis for nonlinear problems in UCSB   27 Mar 2014   
Wave packet transform and its application to time dependent Schrödinger equations
Keiichi Kato, Kobayashi Masaharu, Shingo Ito
東京工業大学非線形解析セミナー@大岡山   10 Jan 2014   
Application of wave packet transformation to time-dependent Schrödinger equation
Keiichi Kato, Shingo Ito
京都大学数理解析研究所研究集会「スペクトル散乱理論とその周辺」   13 Dec 2013   
Wave packet transform and existence of solutions to Schrödinger equations
加藤圭一
Waseda Workshop on Partial Differential Equations   20 Dec 2018   

Research Grants & Projects

 
Propagation of singularities for semilinear wave equations
Basic Science Research Program
Project Year: 2002 - 2009
Study of Propagation of singularities of solutions to semilinear wave equations with nonlinearity satisfying null condition
Representation of solutions to Schroedinger equations in terms of wave packet transform and its application
Project Year: 2009 - 2019
We give an original representation of solutions to Schroedinger equations in terms of wave packet transform and study its application.