MISC

1999年12月

The asymptotic stability of a two-dimensional linear delay difference equation

DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS
  • H Matsunaga
  • ,
  • T Hara

6
4
開始ページ
465
終了ページ
473
記述言語
英語
掲載種別
出版者・発行元
WATAM PRESS

In this paper we give some new necessary and sufficient conditions for the asymptotic stability of a linear delay difference equation
x(n+1) - x(n) + Ax(n-k) = 0, n = 0, 1, ... ,
where k is a nonnegative integer and A is a 2 x 2 constant matrix. In the case A = q(cos theta - sin theta / sin theta cos theta) where q is a real number and \theta\ less than or equal to pi/2 (L) is asymptotically stable if and (L) only if
0 < q < 2 cos k pi + \0\ / 2k + 1.
In case A is a d x d constant matrix, a similar result is also obtained.
AMS (MOS) subject classification: 39A10, 39A11.

Web of Science ® 被引用回数 : 12

リンク情報
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000083998800001&DestApp=WOS_CPL