MISC

2018年2月1日

Novel physical chemistry approaches in biophysical researches with advanced application of lasers: Detection and manipulation

Biochimica et Biophysica Acta - General Subjects
  • Koichi Iwata
  • ,
  • Masahide Terazima
  • ,
  • Hiroshi Masuhara

1862
2
開始ページ
335
終了ページ
357
記述言語
英語
掲載種別
書評論文,書評,文献紹介等
DOI
10.1016/j.bbagen.2017.11.003
出版者・発行元
Elsevier B.V.

Novel methodologies utilizing pulsed or intense CW irradiation obtained from lasers have a major impact on biological sciences. In this article, recent development in biophysical researches fully utilizing the laser irradiation is described for three topics, time-resolved fluorescence spectroscopy, time-resolved thermodynamics, and manipulation of the biological assemblies by intense laser irradiation. First, experimental techniques for time-resolved fluorescence spectroscopy are concisely explained in Section 2. As an example of the recent application of time-resolved fluorescence spectroscopy to biological systems, evaluation of the viscosity of lipid bilayer membranes is described. The results of the spectroscopic experiments strongly suggest the presence of heterogeneous membrane structure with two different viscosity values in liposomes formed by a single phospholipid. Section 3 covers the time-resolved thermodynamics. Thermodynamical properties are important to characterize biomolecules. However, measurement of these quantities for short-lived intermediate species has been impossible by traditional thermodynamical techniques. Recently, development of a spectroscopic method based on the transient grating method enables us to measure these quantities and also to elucidate reaction kinetics which cannot be detected by other spectroscopic methods. The principle of the measurements and applications to some protein reactions are reviewed. Manipulation and fabrication of supramolecues, amino acids, proteins, and living cells by intense laser irradiation are described in Section 4. Unconventional assembly, crystallization and growth, amyloid fibril formation, and living cell manipulation are achieved by CW laser trapping and femtosecond laser-induced cavitation bubbling. Their spatio-temporal controllability is opening a new avenue in the relevant molecular and bioscience research fields. This article is part of a Special Issue entitled “Biophysical Exploration of Dynamical Ordering of Biomolecular Systems” edited by Dr. Koichi Kato.

リンク情報
DOI
https://doi.org/10.1016/j.bbagen.2017.11.003
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/29108958
URL
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85034636339&origin=inward
ID情報
  • DOI : 10.1016/j.bbagen.2017.11.003
  • ISSN : 1872-8006
  • ISSN : 0304-4165
  • PubMed ID : 29108958
  • SCOPUS ID : 85034636339

エクスポート
BibTeX RIS