論文

査読有り
2017年12月

Partial regularity for minimizers of a class of non autonomous functionals with nonstandard growth

CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • Flavia Giannetti
  • ,
  • Antonia Passarelli di Napoli
  • ,
  • Maria Alessandra Ragusa
  • ,
  • Atsushi Tachikawa

56
6
開始ページ
Art. 153, 29
終了ページ
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1007/s00526-017-1248-z
出版者・発行元
SPRINGER HEIDELBERG

We study the regularity of the local minimizers of non autonomous integral functionals of the type
integral(Omega) phi(p(x)) ((A(ij)(alpha beta)(x, u) D(i)u(alpha) D(i)u(beta))(1/2))dx,
where phi is an Orlicz function satisfying both the Delta(2) and the del(2) conditions, p(x) : Omega subset of R-n -> (1, + infinity) is continuous and the function A(x, s) = (A(ij)(alpha beta) (x, s)) is uniformly continuous. More precisely, under suitable assumptions on the functions F and p(x), we prove the Holder continuity of the minimizers. Moreover, assuming in addition that the function A(x, s) = (A(ij)(alpha beta) (x, s)) is Holder continuous, we prove the partial Holder continuity of the gradient of the local minimizers too.

Web of Science ® 被引用回数 : 11

リンク情報
DOI
https://doi.org/10.1007/s00526-017-1248-z
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000413746600001&DestApp=WOS_CPL

エクスポート
BibTeX RIS