論文

査読有り 本文へのリンクあり
2023年10月1日

Universal convex covering problems under translations and discrete rotations

Advances in Geometry
  • Mook Kwon Jung
  • ,
  • Sang Duk Yoon
  • ,
  • Hee-Kap Ahn
  • ,
  • Takeshi Tokuyama

23
4
開始ページ
481
終了ページ
500
記述言語
掲載種別
研究論文(学術雑誌)
DOI
10.1515/advgeom-2023-0021
出版者・発行元
Walter de Gruyter GmbH

Abstract

We consider the smallest-area universal covering of planar objects of perimeter 2 (or equivalently, closed curves of length 2) allowing translations and discrete rotations. In particular, we show that the solution is an equilateral triangle of height 1 when translations and discrete rotations of π are allowed. We also give convex coverings of closed curves of length 2 under translations and discrete rotations of multiples of π/2 and of 2π/3. We show that no proper closed subset of that covering is a covering for discrete rotations of multiples of π/2, which is an equilateral triangle of height smaller than 1, and conjecture that such a covering is the smallest-area convex covering. Finally, we give the smallest-area convex coverings of all unit segments under translations and discrete rotations of 2π/k for all integers k=3.

リンク情報
DOI
https://doi.org/10.1515/advgeom-2023-0021
URL
https://www.degruyter.com/document/doi/10.1515/advgeom-2023-0021/xml
URL
https://www.degruyter.com/document/doi/10.1515/advgeom-2023-0021/pdf
ID情報
  • DOI : 10.1515/advgeom-2023-0021
  • ISSN : 1615-715X
  • eISSN : 1615-7168

エクスポート
BibTeX RIS