BUCHSBAUM CRITERION OF SEGRE PRODUCTS OF BUCHSBAUM MODULES

CHIKASHI MIYAZAKI

The purpose of this paper is to give a survey of a study on the Buchsbaum property of Segre product of Buchsbaum vector bundles on multiprojective spaces based on my talk at the Commutative Algebra Conference 2015, Japan. A base field k is always an algebraically closed field throughout this paper. Let us begin with Grothendieck's theorem.

Theorem 1. Let \mathcal{E} be a vector bundle on \mathbb{P}_{k}^{1} of rank r. Then \mathcal{E} is isomorphic to $\oplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}_{k}^{1}}\left(a_{i}\right)$ for some $a_{i} \in \mathbb{Z}$.

Sketch of Proof. Let us take an integer $\ell \in \mathbb{Z}$ such that $\Gamma(\mathcal{E}(\ell)) \neq 0$ and $\Gamma(\mathcal{E}(\ell-1))=0$. Then we have an inclusion $\mathcal{O}_{\mathbb{P}_{k}^{n}} \rightarrow \mathcal{E}(\ell)$, which gives a direct summand.

Horrocks [5] has given a generalization of Theorem 1.
Theorem 2. Let \mathcal{E} be a vector bundle on \mathbb{P}_{k}^{n} of rank r. Assume that \mathcal{E} is $A C M$, that is, $\mathrm{H}_{*}^{i}(\mathcal{E})=\oplus_{\ell \in \mathbb{Z}} \mathrm{H}^{i}\left(\mathbb{P}_{k}^{n}, \mathcal{E}(\ell)\right)=0$ for $1 \leq i \leq n-1$. Then \mathcal{E} is isomorphic to $\oplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}_{k}^{n}}\left(a_{i}\right)$ for some $a_{i} \in \mathbb{Z}$.
Sketch of Proof. We will prove by induction on n. Let us take $\mathcal{F}=$ $\oplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}_{k}^{n}}\left(a_{i}\right)$ by taking integers a_{i} from an isomorphism $\left.\mathcal{E}\right|_{H} \cong \oplus_{i=1}^{r} \mathcal{O}_{H}\left(a_{i}\right)$. Then we have only to take a section of $\Gamma\left(\mathcal{F}^{\vee} \otimes \mathcal{E}\right)$ by using the hypothesis of induction, which gives an isomorphism $\mathcal{F} \cong \mathcal{E}$.

On the other hand we have another way to prove a splitting criterion of ACM vector bundles on \mathbb{P}_{k}^{n} by the Auslander-Buchsbaum theorem.

Theorem 3. Let A be a noetherian local ring. Let M be a finitely generated A-module with proj $\operatorname{dim}_{A} M<\infty$. Then $\operatorname{proj} \operatorname{dim}_{A} M+\operatorname{depth}_{A} M=\operatorname{depth} A$.

Sketch of another proof of Theorem 2. Let \mathcal{E} a vector bundle on $\mathbb{P}_{k}^{n}=\operatorname{Proj} S$, where $S=k\left[x_{0}, \cdots, x_{n}\right]$. Then we can take $\mathcal{E}=\widetilde{M}$, where M is a CohenMacaulay graded S-module. Hilbert Syzygy Theorem implies proj $\operatorname{dim}_{S} M<$ ∞. By Auslander-Buchsbaum theorem (graded case), $\operatorname{proj} \operatorname{dim}_{S} M=0$, that is, M is graded free.

This observation arises the following question.
Question 4. Find splitting criteria of vector bundles on $\mathbb{P}_{k}^{m} \times \mathbb{P}_{k}^{n}$.

[^0]Facts 5. Let \mathcal{E} be a vector bundle on $X=\mathbb{P}_{k}^{m} \times \mathbb{P}_{k}^{n}$. Then there are cohomological criteria for:
(1) \mathcal{E} is a direct sum of $\mathcal{O}_{X}, \mathcal{O}_{X}(0,1)$ and $\mathcal{O}_{X}(1,0)$ twisted by line bundles $\mathcal{O}_{X}(\ell, \ell)$, that is, $\mathcal{E} \cong\left(\oplus_{\ell} \mathcal{O}_{X}(\ell, \ell)\right) \oplus\left(\oplus_{\ell^{\prime}} \mathcal{O}_{X}\left(\ell^{\prime}, 1+\ell^{\prime}\right)\right) \oplus$ $\left(\oplus_{\ell^{\prime \prime}} \mathcal{O}_{X}\left(1+\ell^{\prime \prime}, \ell^{\prime \prime}\right)\right)$, see [1].
(2) \mathcal{E} is a direct sum of line bundles of the form $\mathcal{O}_{X}\left(\ell_{1}, \ell_{2}\right)$ with $-r_{1} \leq$ $\ell_{1}-\ell_{2} \leq r_{2}$, see [8].
(3) \mathcal{E} is a direct sum of line bundles of $\mathcal{O}_{X}, \mathcal{O}_{X}(0,1), \mathcal{O}_{X}(1,0), p_{1}^{*} \mathcal{O}_{\mathbb{P}^{m}} \otimes$ $p_{2}^{*} \Omega_{\mathbb{P}^{n}}^{a}(a+1)$ and $p_{1}^{*} \Omega_{\mathbb{P}^{m}}^{a}(a+1) \otimes p_{2}^{*} \mathcal{O}_{\mathbb{P}^{m}}$, where $0 \leq a \leq n-1$ twisted by line bundles of the form $\mathcal{O}_{X}(\ell, \ell)$, see $[1]$.

If $\mathcal{E} \cong \mathcal{O}_{\mathbb{P}_{k}^{n}}(\ell), \mathcal{E}$ is ACM. If $\mathcal{E} \cong \Omega_{\mathbb{P}_{k}^{n}}^{i}(\ell), \mathcal{E}$ is Buchsbaum. Now we are going to study the Buchsbaum case for splitting criteria by giving the definition and basic properties of Buchsbaum modules, see [10].

Definition 6. Let (R, \mathfrak{m}) be a Noetherian local ring. A finitely generated R-module M is a Buchsbaum module if $\operatorname{length}_{R}(M / \mathfrak{q} M)-e(\mathfrak{q} ; M)$ is independent of the choice of a parameter ideal \mathfrak{q} for M.

Definition 7. Let $R=k\left[x_{0}, \cdots, x_{n}\right]$ be a polynomial ring over k with standard grading and $\mathfrak{m}=R_{+}$. A finitely generated graded R-module M is called a graded Buchsbaum module if $M_{\mathfrak{m}}$ is a Buchsbaum $R_{\mathfrak{m}}$-module.

Proposition 8. Let $R=k\left[x_{0}, \cdots, x_{n}\right]$ be a polynomial ring over k with standard grading and $\mathfrak{m}=R_{+}$. Let M be a finitely generated graded R module of $\operatorname{dim} M=d+1$. The following conditions are equivalent:
(1) M is a graded Buchsbaum R-module.
(2) For any homogeneous (linear) system of parameters z_{0}, \cdots, z_{d} of R module $M,\left[\left(z_{0}, \cdots, z_{i-1}\right) M: z_{i}\right]=\left[\left(z_{0}, \cdots, z_{i-1}\right) M: \mathfrak{m}\right]$ holds for $i=0, \cdots, d$.
(3) For any homogeneous (linear) system of parameters z_{0}, \cdots, z_{d} of R module $M, \mathfrak{m H}_{\mathfrak{m}}^{i}\left(M /\left(z_{j}, \cdots, z_{d}\right) M\right)=0$ holds for $j=0, \cdots, d+1$ and $0 \leq i \leq j-1$.
(4) Canonical maps $\operatorname{Ext}_{R}^{i}(k, M) \rightarrow \mathrm{H}_{\mathfrak{m}}^{i}(M)$ are surjective for $0 \leq i \leq d$.

For vector bundles we use the following definition.
Definition 9. Let \mathcal{E} be a vector bundle on \mathbb{P}_{k}^{n}.
(1) \mathcal{E} is called ACM if $\mathrm{H}_{*}^{i}(\mathcal{E})=0,1 \leq i \leq n-1$.
(2) \mathcal{E} is called Buchsbaum if for any r-plane with $1 \leq r \leq n$ we have $\mathfrak{m} H_{*}^{i}\left(\left.\mathcal{E}\right|_{L}\right)=0$ for $i=1, \cdots, r-1$.
(3) \mathcal{E} is called quasi-Buchsbaum if $\mathfrak{m H}_{*}^{i}(\mathcal{E})=0,1 \leq i \leq n-1$.

Let us state surprising results on the structure of Buchsbaum bundles, which has been proved by Goto [3] and Chang [2] in different ways.

Theorem 10. Let \mathcal{E} be a Buchsbaum vector bundle on \mathbb{P}_{k}^{n}. Then \mathcal{E} is isomorphic to a direct sum of vector bundles of the form $\Omega_{\mathbb{P}_{k}^{n}}^{i}(\ell)$.

In order to generalize to vector bundles on multiprojective space, we will study the following questions.
Question 11. Let \mathcal{E} be a vector bundle on $X=\mathbb{P}_{k}^{m} \times \mathbb{P}_{k}^{n}$. When is \mathcal{E} isomorphic to a direct sum of vector bundles of the form $p_{1}^{*} \Omega_{\mathbb{P}^{m}}^{i}(a) \otimes p_{2}^{*} \Omega_{\mathbb{P}^{n}}^{j}(b)$?
Question 12. Let $\mathcal{E}=p_{1}^{*} \Omega_{\mathbb{P}^{m}}^{i}(a) \otimes p_{2}^{*} \Omega_{\mathbb{P}^{n}}^{j}(b)$ on $X=\mathbb{P}_{k}^{m} \times \mathbb{P}_{k}^{n}$.
(1) When is \mathcal{E} ACM?
(2) When is \mathcal{E} Buchsbaum?
(3) When is \mathcal{E} quasi-Buchsbaum?

The ACM and quasi-Buchsbaum property is described in terms of cohomologies of \mathcal{E}. It is an easy calculation by the Künneth formula. From now on we will study the Buchsbaum property of \mathcal{E}. The following is our main result coming from Theorem 18. The rest of the paper gives an outline of the proof. The details will be written in [9].

Theorem 13. On the Segre product $\mathbb{P}_{k}^{m} \times \mathbb{P}_{k}^{n}$ let us take a vector bundle $\mathcal{E}=p_{1}^{*} \Omega_{\mathbb{P}^{m}}^{i}(a) \otimes p_{2}^{*} \Omega_{\mathbb{P}^{n}}^{j}(b)$ for $1 \leq i \leq m$ and $1 \leq j \leq n$, where p_{1} and p_{2} are projections.
(1) In case either $(i, j)=(m, n)$, or $i<m$ and $j<n, \mathcal{E}$ is Buchsbaum if and only if $-n+j-i-1 \leq b-a \leq m+j-i+1$.
(2) In case $i<m$ and $j=n, \mathcal{E}$ is Buchsbaum if and only if $-i \leq b-a \leq$ $m-i+n+1$.

Remark 14. Let R and S be the polynomial rings over a field k. Let M be a Buchsbaum R-module with depth $M \geq 2$. Let N be a Buchsbaum S-module with depth $N \geq 2$. Cohomological data $\operatorname{dim}_{k}\left[\mathrm{H}_{\mathfrak{m}}^{i}(M)\right]_{\ell}$ and $\operatorname{dim}_{k}\left[\mathrm{H}_{\mathfrak{m}}^{i}(N)\right]_{\ell}$ give structure of direct sums of syzygies over appropriate polynomial subrings $R^{\prime} \subseteq R$ and $S^{\prime} \subseteq S$. Then the Cohen-Macaulay and Buchsbaum property of the Segre product $M \# N$ of M and N are described in terms of the data by the Theorem 13.

Now let us describe spectral sequence theory for Buchsbaum modules according to $[6,7]$.

Let $R=k\left[x_{0}, \cdots, x_{n}\right]$ be the polynomial ring over $\bar{k}=k$. Let M be a finitely generated graded R-module of depth $M \geq 2$. Let $0 \rightarrow M \rightarrow$ I^{\bullet} be the minimal injective resolution of M in the category of graded R modules, constructed as in [4]. We set $I^{i}={ }^{\prime} I^{i} \oplus{ }^{\prime \prime} I^{i}$, where $\operatorname{Ass}_{R}\left({ }^{\prime} I^{i}\right)=$ $\{\mathfrak{m}\}$ and $\mathfrak{m} \notin \operatorname{Ass}_{R}\left({ }^{\prime \prime} I^{i}\right)$. Let us put $\bar{I}^{\bullet}=\left(0 \rightarrow M \xrightarrow{\varepsilon}{ }^{\prime \prime} I^{\bullet}[-1]\right)$. Then $\bar{I}^{\bullet} \cong$ $\mathbb{R} \Gamma_{\mathfrak{m}}(M)$. Let K_{\bullet} be a Koszul complex $K_{\bullet}\left(\left(x_{0}, \cdots, x_{n}\right) ; R\right)$. Let us consider a double complex $B^{\bullet \bullet}=\operatorname{Hom}_{R}\left(K_{\bullet}, \bar{I}^{\bullet}\right)$, that is, $B^{p, q}=\operatorname{Hom}_{R}\left(K_{p}, \bar{I}^{q}\right)$. Take filtrations ' $F_{t}\left(B^{\bullet \bullet}\right)=\sum_{p \geq t} B^{p, q}$ and ${ }^{\prime \prime} F_{t}\left(B^{\bullet \bullet}\right)=\sum_{q \geq t} B^{p, q}$. The filtrations ${ }^{\prime} F_{t}$ and ${ }^{\prime \prime} F_{t}$ give spectral sequences $\left\{{ }^{\prime} F_{r}^{p, q}\right\}$ and $\left\{{ }^{\prime \prime} F_{r}^{p, q}\right\}$ respectively:

$$
\left\{\begin{array}{ccc}
{ }^{\prime} F_{1}^{p, q}=\operatorname{Ker} d^{\prime \prime p, q} / \operatorname{Im} d^{\prime \prime p, q-1} & \Rightarrow & \\
{ }^{\prime \prime} F_{1}^{p, q}=\operatorname{Ker} d^{\prime p, q} / \operatorname{Im} d^{\prime p-1, q} & \Rightarrow & H^{p+q}\left(B^{\bullet \bullet}\right) \\
3 & &
\end{array}\right.
$$

Note that ${ }^{\prime} \mathrm{F}_{1}^{p, q} \cong \operatorname{Hom}_{R}\left(K_{p}, \mathrm{H}_{\mathfrak{m}}^{q}(M)\right)$ and ${ }^{\prime \prime} \mathrm{F}_{1}^{p, 0} \cong \operatorname{Ext}_{R}^{p}(k, M)$ and ${ }^{\prime \prime} \mathrm{F}_{1}^{p, q}=0$ for $q \neq 0$.

Proposition 15. Under the above conditions the following conditions are equivalent:
(1) M is a graded Buchsbaum R-module.
(2) $d_{r}^{p, q}: \mathrm{E}_{r}^{p, q} \rightarrow \mathrm{E}_{r}^{p+r, q-r+1}$ is a zero map for all p, q and r with $q \leq d$ and $r \geq 1$.
(3) $d_{r}^{0, q}: \mathrm{E}_{r}^{0, q} \rightarrow \mathrm{E}_{r}^{r, q-r+1}$ is a zero map for all q and r with $q \leq d$ and $r \geq 1$.

Now we will describe the behaviour of the syzygy modules in the spectral sequence. Syzygy modules are typical Buchsbaum modules.

Let R be the polynomial ring $k\left[x_{0}, \cdots, x_{n}\right]$. Let L_{i} be a graded free R-module $R(-i)^{\oplus e_{i}}$ of rank $e_{i}={ }_{n+1} \mathrm{C}_{i}, \quad i=0, \cdots, n+$ 1. Let us consider the Koszul resolution of a graded R-module $k: \quad 0 \rightarrow L_{n+1} \rightarrow L_{n} \rightarrow \cdots \rightarrow L_{1} \rightarrow L_{0} \rightarrow k \rightarrow 0$. Let us take $E_{i}=$ Coker $\left(L_{i+1} \rightarrow L_{i}\right), i=1, \cdots, n$ and $E_{n+1}=L_{n+1}$. Then the i-th syzygy $\operatorname{module} E_{i}$ is a Buchsbaum module such as $\mathrm{H}_{\mathfrak{m}}^{i}\left(E_{i}\right) \cong k$ for $i=1, \cdots, n$, $\mathrm{H}_{\mathfrak{m}}^{q}\left(E_{i}\right)=0$ for $q \neq i, n+1$ and E_{i} is generated by elements of degree i.
Lemma 16. Under the above notation we have
(1) $\operatorname{Soc}_{\mathfrak{m}}^{n+1}\left(E_{i}\right)\left(=[0: \mathfrak{m}]_{\mathrm{H}_{\mathfrak{m}}^{n+1}\left(E_{i}\right)}\right) \cong k(n-i+2)^{\oplus e_{i}}$ for $1 \leq i \leq n$
(2) $\operatorname{Soc}_{\mathfrak{m}}^{n+1}\left(E_{n+1}\right) \cong k$
(3) $\operatorname{Ext}_{R}^{i+j}\left(k, E_{i}\right) \cong k(j)^{\oplus e_{j}}$ for $1 \leq i \leq n+1$ and $0 \leq i+j \leq n+1$, where $k(j)^{\oplus e_{j}}=0$ for $j<0$.

Let us take $M=E_{i}$. Note $\operatorname{depth}_{R} E_{i}=i \geq 2$ and $\widetilde{M}=\Omega_{\mathbb{P}_{k}^{n}}^{i-1}$ on $\mathbb{P}_{k}^{n}=$ Proj R. A complex $\bar{I}^{\bullet}=\left(0 \rightarrow M \xrightarrow{\varepsilon}{ }^{\prime \prime} I^{\bullet}[-1]\right)$ gives $\bar{I}^{\bullet} \cong \mathbb{R} \Gamma_{\mathfrak{m}}(M)$. Then we have a spectral sequence $\left\{\mathrm{E}_{r}^{p, q}\right\}$ with

$$
\mathrm{E}_{1}^{p, q}=\operatorname{Hom}_{R}\left(K_{p}, \mathrm{H}_{\mathfrak{m}}^{q}(M)\right) \Rightarrow \mathrm{H}^{p+q}\left(B^{\bullet \bullet}\right)=\operatorname{Ext}_{R}^{p+q}(k, M)
$$

Lemma 17. Let R be the polynomial ring $k\left[x_{0}, \cdots, x_{n}\right]$ over a field k. Let M be the i-th syzygy module E_{i} for $2 \leq i \leq n$, that is, $\Omega_{\mathbb{P}_{k}^{n}}^{i-1}=\widetilde{M}$ on $\mathbb{P}_{k}^{n}=\operatorname{Proj} R$. In the spectral sequence $\left\{\mathrm{E}_{r}^{p, q}\right\}$ with $\mathrm{E}_{1}^{p, q}=\operatorname{Hom}_{R}\left(K_{p}, \mathrm{H}_{\mathfrak{m}}^{q}(M)\right)$ $\Rightarrow \mathrm{H}^{p+q}\left(B^{\bullet \bullet}\right) \cong \operatorname{Ext}_{R}^{p+q}(k, M)$,

- $\varphi_{i}: \mathrm{H}^{i}\left(B^{\bullet \bullet}\right)=\operatorname{Ext}_{R}^{i}(k, M) \rightarrow \mathrm{E}_{\infty}^{0, i}=\mathrm{E}_{1}^{0, i}=\mathrm{H}_{\mathfrak{m}}^{i}(M)$
- $\psi_{i}: \mathrm{E}_{n-i+2}^{0, n+1}=[0: \mathfrak{m}]_{\mathrm{H}_{\mathfrak{m}}^{n+1}(M)} \rightarrow \mathrm{E}_{n-i+2}^{n-i+2, i}=\mathrm{H}_{\mathfrak{m}}^{i}(M)(n-i+2)^{\oplus e_{i}}$ are isomorphisms.

Let $R=k\left[x_{0}, \cdots, x_{m}\right]$ and $S=k\left[y_{0}, \cdots, y_{n}\right]$ be the polynomial rings. A Segre product of R and S is defined as $R \# S=\oplus_{\ell \in \mathbb{Z}}\left(R_{\ell} \otimes_{k} S_{\ell}\right)$, which is a graded ring. Proj $R \# S \cong \operatorname{Proj} R \times \operatorname{Proj} S$. For a graded R-module M and a graded S-module N, a Segre product of M and N is defined as $M \# N=\oplus_{\ell \in \mathbb{Z}}\left(M_{\ell} \otimes_{k} N_{\ell}\right)$, which is a graded $(R \# S)$-module. Let I^{\bullet} be the
minimal injective resolution of a graded R-module M. Let J^{\bullet} be the minimal injective resolution of a graded S-module N. We take $I^{i}={ }^{\prime} I^{i} \oplus^{\prime \prime} I^{i}$, where $\operatorname{Ass}_{R}\left({ }^{\prime} I^{i}\right)=\{\mathfrak{m}\}, \mathfrak{m} \notin \operatorname{Ass}_{R}\left({ }^{\prime \prime} I^{i}\right)$ and $J^{i}={ }^{\prime} J^{i} \oplus{ }^{\prime \prime} J^{i}$, where $\operatorname{Ass}_{R}\left({ }^{\prime} I^{i}\right)=\{\mathfrak{m}\}, \mathfrak{m} \notin \operatorname{Ass}_{R}\left({ }^{\prime \prime} I^{i}\right)$. Then let us put $\bar{I}^{\bullet}=\left(0 \rightarrow M \xrightarrow{\varepsilon}{ }^{\prime \prime} I^{\bullet}[-1]\right)$ and $\bar{J}^{\bullet}=\left(0 \rightarrow N \stackrel{\varepsilon}{\rightarrow}{ }^{\prime \prime} J^{\bullet}[-1]\right)$. Now we put $T=R \# S$ and $\mathfrak{m}=T_{+}$. Let us take a complex $W^{\bullet}=\left(0 \rightarrow M \# N \rightarrow\left({ }^{\prime \prime} I^{\bullet} \#^{\prime \prime} J^{\bullet}\right)[-1]\right)$, that is, $W^{\ell}=\oplus_{i+j=\ell-1}\left({ }^{\prime \prime} I^{i} \#^{\prime \prime} J^{j}\right)$ for $\ell \geq 1$. Then we have $W^{\bullet} \cong \mathbb{R} \Gamma_{\mathfrak{m}}(M \# N)$.

Thanks to the construction of a resolution W^{\bullet}, we will describe explicitly cycle elements of the cohomology modules of the Segre product, and we will obtain the following result.

Theorem 18. Let $R=k\left[x_{0}, \cdots, x_{m}\right]$ and $S=k\left[y_{0}, \cdots, y_{n}\right]$ be the polynomial rings over a field k. Let E_{i} be an i-th syzygy R-module for $2 \leq i \leq m+1$ and F_{j} be a j-th syzygy S-module for $2 \leq j \leq n+1$. Put $M=E_{i}(a)$ and $N=F_{j}(b)$ for $a, b \in \mathbb{Z}$.
(1) In case $(i, j)=(m+1, n+1), M \# N$ is Buchsbaum if and only if $\mathfrak{m}\left(M \# \mathrm{H}_{\mathfrak{m}}^{n+1}(N)\right)=0$ and $\mathfrak{m}\left(\mathrm{H}_{\mathfrak{m}}^{m+1}(M) \# N\right)=0$.
(2) In case $(i, j) \neq(m+1, n+1)$, $M \# N$ is Buchsbaum if and only if $M \# \mathrm{H}_{\mathfrak{m}}^{n+1}(N)=0$ and $\mathrm{H}_{\mathfrak{m}}^{m+1}(M) \# N=0$.

Finally we end with posing the following problem.
Problem 19. Let \mathcal{E} be a vector bundle on $X=\mathbb{P}_{k}^{m} \times \mathbb{P}_{k}^{n}$. Give cohomological criteria whether \mathcal{E} is a direct sum of line bundles of $p_{1}^{*} \Omega_{\mathbb{P}^{m}}^{i}(a) \otimes p_{2}^{*} \Omega_{\mathbb{P}^{n}}^{j}(b)$ with some restriction for i, j, a and b.

References

[1] E. Ballico and F. Malaspina, Regularity and cohomological splitting conditions for vector bundles on multiprojective spaces, J. Algebra 345 (2011), 137-149.
[2] M. C. Chang, Characterization of arithmetically Buchsbaum subschemes of codimension 2 in \mathbb{P}^{n}, J. Differential Geom. 31 (1990), 323-341.
[3] S. Goto, Maximal Buchsbaum modules over regular local rings a nd a structure theorem for generalized Cohen-Macaulay modules, ASPM 11(1987), 39-64.
[4] S. Goto and K.-i. Watanabe, On graded rings, I, J. Math. Soc. Japan, 30(1978), 179-213.
[5] G. Horrocks, Vector bundles on the punctual spectrum of a ring, Proc. London Math. Soc. 14 (1964), 689-713.
[6] C. Miyazaki, Spectral sequence theory of graded modules and its application to the Buchsbaum property and Segre products, J. Pure Appl. Algebra, 85(1993), 143-161.
[7] C. Miyazaki, Spectral sequence theory for generalized Cohen-Macaulay graded modules, Commutative Algebra, pp. 164-176, World Sci. Publ., 1994.
[8] C. Miyazaki, A cohomological criterion for splitting of vector bundles on multiprojective space, Proc. Amer. Math. Soc., 143 (2015), 1435-1440.
[9] C. Miyazaki, Buchsbaum criterion of Segre products of vector bundles on multiprojective space, preprint.
[10] J. Stückrad and W. Vogel, Buchsbaum rings and applications, Springer, 1986.

```
Kumamoto University
E-mail address: cmiyazak@educ.kumamoto-u.ac.jp
```


[^0]: 2010 Mathematics Subject Classification. 14F05, 14J60.
 Partially supported by Grant-in-Aid for Scientific Research (C) (26400048).

