## BUCHSBAUM CRITERION OF SEGRE PRODUCTS OF BUCHSBAUM MODULES

## CHIKASHI MIYAZAKI

The purpose of this paper is to give a survey of a study on the Buchsbaum property of Segre product of Buchsbaum vector bundles on multiprojective spaces based on my talk at the Commutative Algebra Conference 2015, Japan. A base field k is always an algebraically closed field throughout this paper. Let us begin with Grothendieck's theorem.

**Theorem 1.** Let  $\mathcal{E}$  be a vector bundle on  $\mathbb{P}^1_k$  of rank r. Then  $\mathcal{E}$  is isomorphic to  $\bigoplus_{i=1}^r \mathcal{O}_{\mathbb{P}^1_k}(a_i)$  for some  $a_i \in \mathbb{Z}$ .

Sketch of Proof. Let us take an integer  $\ell \in \mathbb{Z}$  such that  $\Gamma(\mathcal{E}(\ell)) \neq 0$  and  $\Gamma(\mathcal{E}(\ell-1)) = 0$ . Then we have an inclusion  $\mathcal{O}_{\mathbb{P}^n_k} \to \mathcal{E}(\ell)$ , which gives a direct summand.

Horrocks [5] has given a generalization of Theorem 1.

**Theorem 2.** Let  $\mathcal{E}$  be a vector bundle on  $\mathbb{P}^n_k$  of rank r. Assume that  $\mathcal{E}$  is ACM, that is,  $H^i_*(\mathcal{E}) = \bigoplus_{\ell \in \mathbb{Z}} H^i(\mathbb{P}^n_k, \mathcal{E}(\ell)) = 0$  for  $1 \leq i \leq n-1$ . Then  $\mathcal{E}$  is isomorphic to  $\bigoplus_{i=1}^r \mathcal{O}_{\mathbb{P}^n_k}(a_i)$  for some  $a_i \in \mathbb{Z}$ .

Sketch of Proof. We will prove by induction on n. Let us take  $\mathcal{F} = \bigoplus_{i=1}^r \mathcal{O}_{\mathbb{P}_k^n}(a_i)$  by taking integers  $a_i$  from an isomorphism  $\mathcal{E}|_H \cong \bigoplus_{i=1}^r \mathcal{O}_H(a_i)$ . Then we have only to take a section of  $\Gamma(\mathcal{F}^{\vee} \otimes \mathcal{E})$  by using the hypothesis of induction, which gives an isomorphism  $\mathcal{F} \cong \mathcal{E}$ .

On the other hand we have another way to prove a splitting criterion of ACM vector bundles on  $\mathbb{P}^n_k$  by the Auslander-Buchsbaum theorem.

**Theorem 3.** Let A be a noetherian local ring. Let M be a finitely generated A-module with proj  $\dim_A M < \infty$ . Then proj  $\dim_A M + \operatorname{depth}_A M = \operatorname{depth} A$ .

Sketch of another proof of Theorem 2. Let  $\mathcal{E}$  a vector bundle on  $\mathbb{P}^n_k = \operatorname{Proj} S$ , where  $S = k[x_0, \cdots, x_n]$ . Then we can take  $\mathcal{E} = \widetilde{M}$ , where M is a Cohen-Macaulay graded S-module. Hilbert Syzygy Theorem implies  $\operatorname{proj} \dim_S M < \infty$ . By Auslander-Buchsbaum theorem (graded case),  $\operatorname{proj} \dim_S M = 0$ , that is, M is graded free.  $\square$ 

This observation arises the following question.

**Question 4.** Find splitting criteria of vector bundles on  $\mathbb{P}_k^m \times \mathbb{P}_k^n$ .

<sup>2010</sup> Mathematics Subject Classification. 14F05, 14J60.

Partially supported by Grant-in-Aid for Scientific Research (C) (26400048).

**Facts 5.** Let  $\mathcal{E}$  be a vector bundle on  $X = \mathbb{P}_k^m \times \mathbb{P}_k^n$ . Then there are cohomological criteria for:

- (1)  $\mathcal{E}$  is a direct sum of  $\mathcal{O}_X$ ,  $\mathcal{O}_X(0,1)$  and  $\mathcal{O}_X(1,0)$  twisted by line bundles  $\mathcal{O}_X(\ell,\ell)$ , that is,  $\mathcal{E} \cong (\bigoplus_{\ell} \mathcal{O}_X(\ell,\ell)) \oplus (\bigoplus_{\ell'} \mathcal{O}_X(\ell',1+\ell')) \oplus (\bigoplus_{\ell''} \mathcal{O}_X(1+\ell'',\ell''))$ , see [1].
- (2)  $\mathcal{E}$  is a direct sum of line bundles of the form  $\mathcal{O}_X(\ell_1, \ell_2)$  with  $-r_1 \leq \ell_1 \ell_2 \leq r_2$ , see [8].
- (3)  $\mathcal{E}$  is a direct sum of line bundles of  $\mathcal{O}_X$ ,  $\mathcal{O}_X(0,1)$ ,  $\mathcal{O}_X(1,0)$ ,  $p_1^*\mathcal{O}_{\mathbb{P}^m}\otimes p_2^*\Omega_{\mathbb{P}^n}^a(a+1)$  and  $p_1^*\Omega_{\mathbb{P}^m}^a(a+1)\otimes p_2^*\mathcal{O}_{\mathbb{P}^m}$ , where  $0\leq a\leq n-1$  twisted by line bundles of the form  $\mathcal{O}_X(\ell,\ell)$ , see [1].
- If  $\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^n_k}(\ell)$ ,  $\mathcal{E}$  is ACM. If  $\mathcal{E} \cong \Omega^i_{\mathbb{P}^n_k}(\ell)$ ,  $\mathcal{E}$  is Buchsbaum. Now we are going to study the Buchsbaum case for splitting criteria by giving the definition and basic properties of Buchsbaum modules, see [10].
- **Definition 6.** Let  $(R, \mathfrak{m})$  be a Noetherian local ring. A finitely generated R-module M is a Buchsbaum module if  $\operatorname{length}_R(M/\mathfrak{q}M) e(\mathfrak{q}; M)$  is independent of the choice of a parameter ideal  $\mathfrak{q}$  for M.
- **Definition 7.** Let  $R = k[x_0, \dots, x_n]$  be a polynomial ring over k with standard grading and  $\mathfrak{m} = R_+$ . A finitely generated graded R-module M is called a graded Buchsbaum module if  $M_{\mathfrak{m}}$  is a Buchsbaum  $R_{\mathfrak{m}}$ -module.

**Proposition 8.** Let  $R = k[x_0, \dots, x_n]$  be a polynomial ring over k with standard grading and  $\mathfrak{m} = R_+$ . Let M be a finitely generated graded R-module of dim M = d + 1. The following conditions are equivalent:

- (1) M is a graded Buchsbaum R-module.
- (2) For any homogeneous (linear) system of parameters  $z_0, \dots, z_d$  of Rmodule M,  $[(z_0, \dots, z_{i-1})M : z_i] = [(z_0, \dots, z_{i-1})M : \mathfrak{m}]$  holds for  $i = 0, \dots, d$ .
- (3) For any homogeneous (linear) system of parameters  $z_0, \dots, z_d$  of Rmodule M,  $\mathfrak{m}H^i_{\mathfrak{m}}(M/(z_j, \dots, z_d)M) = 0$  holds for  $j = 0, \dots, d+1$ and  $0 \le i \le j-1$ .
- (4) Canonical maps  $\operatorname{Ext}_R^i(k,M) \to \operatorname{H}_{\mathfrak{m}}^i(M)$  are surjective for  $0 \le i \le d$ .

For vector bundles we use the following definition.

**Definition 9.** Let  $\mathcal{E}$  be a vector bundle on  $\mathbb{P}_k^n$ .

- (1)  $\mathcal{E}$  is called ACM if  $H_*^i(\mathcal{E}) = 0$ ,  $1 \le i \le n 1$ .
- (2)  $\mathcal{E}$  is called Buchsbaum if for any r-plane with  $1 \leq r \leq n$  we have  $\mathfrak{m}H^i_*(\mathcal{E}|_L) = 0$  for  $i = 1, \dots, r-1$ .
- (3)  $\mathcal{E}$  is called quasi-Buchsbaum if  $\mathfrak{m}H^i_*(\mathcal{E}) = 0$ ,  $1 \le i \le n-1$ .

Let us state surprising results on the structure of Buchsbaum bundles, which has been proved by Goto [3] and Chang [2] in different ways.

**Theorem 10.** Let  $\mathcal{E}$  be a Buchsbaum vector bundle on  $\mathbb{P}^n_k$ . Then  $\mathcal{E}$  is isomorphic to a direct sum of vector bundles of the form  $\Omega^i_{\mathbb{P}^n_k}(\ell)$ .

In order to generalize to vector bundles on multiprojective space, we will study the following questions.

**Question 11.** Let  $\mathcal{E}$  be a vector bundle on  $X = \mathbb{P}_k^m \times \mathbb{P}_k^n$ . When is  $\mathcal{E}$  isomorphic to a direct sum of vector bundles of the form  $p_1^*\Omega_{\mathbb{P}^m}^i(a) \otimes p_2^*\Omega_{\mathbb{P}^n}^j(b)$ ?

Question 12. Let  $\mathcal{E} = p_1^* \Omega_{\mathbb{P}^m}^i(a) \otimes p_2^* \Omega_{\mathbb{P}^n}^j(b)$  on  $X = \mathbb{P}_k^m \times \mathbb{P}_k^n$ .

- (1) When is  $\mathcal{E}$  ACM?
- (2) When is  $\mathcal{E}$  Buchsbaum?
- (3) When is  $\mathcal{E}$  quasi-Buchsbaum?

The ACM and quasi-Buchsbaum property is described in terms of cohomologies of  $\mathcal{E}$ . It is an easy calculation by the Künneth formula. From now on we will study the Buchsbaum property of  $\mathcal{E}$ . The following is our main result coming from Theorem 18. The rest of the paper gives an outline of the proof. The details will be written in [9].

**Theorem 13.** On the Segre product  $\mathbb{P}_k^m \times \mathbb{P}_k^n$  let us take a vector bundle  $\mathcal{E} = p_1^* \Omega_{\mathbb{P}^m}^i(a) \otimes p_2^* \Omega_{\mathbb{P}^n}^j(b)$  for  $1 \leq i \leq m$  and  $1 \leq j \leq n$ , where  $p_1$  and  $p_2$  are projections.

- (1) In case either (i, j) = (m, n), or i < m and j < n,  $\mathcal{E}$  is Buchsbaum if and only if  $-n + j i 1 \le b a \le m + j i + 1$ .
- (2) In case i < m and j = n,  $\mathcal{E}$  is Buchsbaum if and only if  $-i \le b a \le m i + n + 1$ .

Remark 14. Let R and S be the polynomial rings over a field k. Let M be a Buchsbaum R-module with depth  $M \geq 2$ . Let N be a Buchsbaum S-module with depth  $N \geq 2$ . Cohomological data  $\dim_k[\operatorname{H}^i_{\mathfrak{m}}(M)]_{\ell}$  and  $\dim_k[\operatorname{H}^i_{\mathfrak{m}}(N)]_{\ell}$  give structure of direct sums of syzygies over appropriate polynomial subrings  $R' \subseteq R$  and  $S' \subseteq S$ . Then the Cohen-Macaulay and Buchsbaum property of the Segre product M # N of M and N are described in terms of the data by the Theorem 13.

Now let us describe spectral sequence theory for Buchsbaum modules according to [6, 7].

Let  $R=k[x_0,\cdots,x_n]$  be the polynomial ring over  $\bar{k}=k$ . Let M be a finitely generated graded R-module of depth  $M\geq 2$ . Let  $0\to M\to I^{\bullet}$  be the minimal injective resolution of M in the category of graded R-modules, constructed as in [4]. We set  $I^i='I^i\oplus''I^i$ , where  $\mathrm{Ass}_R('I^i)=\{\mathfrak{m}\}$  and  $\mathfrak{m}\not\in\mathrm{Ass}_R(''I^i)$ . Let us put  $\bar{I}^{\bullet}=(0\to M\stackrel{\varepsilon}{\to}''I^{\bullet}[-1])$ . Then  $\bar{I}^{\bullet}\cong\mathbb{R}\Gamma_{\mathfrak{m}}(M)$ . Let  $K_{\bullet}$  be a Koszul complex  $K_{\bullet}((x_0,\cdots,x_n);R)$ . Let us consider a double complex  $B^{\bullet\bullet}=\mathrm{Hom}_R(K_{\bullet},\bar{I}^{\bullet})$ , that is,  $B^{p,q}=\mathrm{Hom}_R(K_p,\bar{I}^q)$ . Take filtrations  $F_t(B^{\bullet\bullet})=\sum_{p\geq t}B^{p,q}$  and  $F_t(B^{\bullet\bullet})=\sum_{q\geq t}B^{p,q}$ . The filtrations  $F_t(B^{\bullet\bullet})=\sum_{q\geq t}B^{p,q}$  and  $F_t(B^{\bullet\bullet})=\sum_{q\geq t}B^{p,q}$ . The filtrations  $F_t(B^{\bullet\bullet})=\sum_{q\geq t}B^{p,q}$  and  $F_t(B^{\bullet\bullet})=\sum_{q\geq t}B^{p,q}$ .

$$\left\{ \begin{array}{l} {}'F_1^{p,q} = \operatorname{Ker} d''^{p,q}/\operatorname{Im} d''^{p,q-1} \quad \Rightarrow \quad \\ \qquad \qquad \qquad H^{p+q}(B^{\bullet \bullet}). \\ {}''F_1^{p,q} = \operatorname{Ker} d''^{p,q}/\operatorname{Im} d'^{p-1,q} \quad \Rightarrow \end{array} \right.$$

Note that  ${}^{\prime}\mathrm{F}^{p,q}_{1} \cong \mathrm{Hom}_{R}(K_{p},\mathrm{H}^{q}_{\mathfrak{m}}(M))$  and  ${}^{\prime\prime}\mathrm{F}^{p,0}_{1} \cong \mathrm{Ext}^{p}_{R}(k,M)$  and  ${}^{\prime\prime}\mathrm{F}^{p,q}_{1} = 0$ for  $q \neq 0$ .

**Proposition 15.** Under the above conditions the following conditions are equivalent:

- (1) M is a graded Buchsbaum R-module.
- (2)  $d_r^{p,q}: \mathbb{E}_r^{p,q} \to \mathbb{E}_r^{p+r,q-r+1}$  is a zero map for all p, q and r with  $q \leq d$
- and  $r \ge 1$ . (3)  $d_r^{0,q}: \mathbf{E}_r^{0,q} \to \mathbf{E}_r^{r,q-r+1}$  is a zero map for all q and r with  $q \le d$  and  $r \ge 1$ .

Now we will describe the behaviour of the syzygy modules in the spectral sequence. Syzygy modules are typical Buchsbaum modules.

Let R be the polynomial ring  $k[x_0, \dots, x_n]$ . Let  $L_i$  be a graded free R-module  $R(-i)^{\oplus e_i}$  of rank  $e_i = {}_{n+1}C_i$ ,  $i = 0, \cdots, n +$ Let us consider the Koszul resolution of a graded R-module  $0 \to L_{n+1} \to L_n \to \cdots \to L_1 \to L_0 \to k \to 0.$ Let us take  $E_i =$ Coker  $(L_{i+1} \to L_i)$ ,  $i = 1, \dots, n$  and  $E_{n+1} = L_{n+1}$ . Then the *i*-th syzygy module  $E_i$  is a Buchsbaum module such as  $H_m^i(E_i) \cong k$  for  $i = 1, \dots, n$ ,  $H_{\mathfrak{m}}^{q}(E_{i})=0$  for  $q\neq i, n+1$  and  $E_{i}$  is generated by elements of degree i.

Lemma 16. Under the above notation we have

- (1)  $\operatorname{Soc} H_{\mathfrak{m}}^{n+1}(E_i) (= [0 : \mathfrak{m}]_{H_{\mathfrak{m}}^{n+1}(E_i)}) \cong k(n-i+2)^{\oplus e_i} \text{ for } 1 \leq i \leq n$
- (2) Soc  $H_{\mathfrak{m}}^{n+1}(E_{n+1}) \cong k$ (3) Ext $_{R}^{i+j}(k, E_{i}) \cong k(j)^{\oplus e_{j}}$  for  $1 \leq i \leq n+1$  and  $0 \leq i+j \leq n+1$ , where  $k(j)^{\oplus e_{j}} = 0$  for j < 0.

Let us take  $M = E_i$ . Note depth<sub>R</sub> $E_i = i \geq 2$  and  $\widetilde{M} = \Omega_{\mathbb{P}_n^n}^{i-1}$  on  $\mathbb{P}_k^n = 0$ Proj R. A complex  $\bar{I}^{\bullet} = (0 \to M \stackrel{\varepsilon}{\to} "I^{\bullet}[-1])$  gives  $\bar{I}^{\bullet} \cong \mathbb{R}\Gamma_{\mathfrak{m}}(M)$ . Then we have a spectral sequence  $\{E_r^{p,q}\}$  with

$$\mathrm{E}^{p,q}_1 = \mathrm{Hom}_R(K_p,\mathrm{H}^q_\mathfrak{m}(M)) \Rightarrow \mathrm{H}^{p+q}(B^{\bullet \bullet}) = \mathrm{Ext}^{p+q}_R(k,M).$$

**Lemma 17.** Let R be the polynomial ring  $k[x_0, \dots, x_n]$  over a field k. Let M be the i-th syzygy module  $E_i$  for  $2 \leq i \leq n$ , that is,  $\Omega^{i-1}_{\mathbb{P}^n_i} = \widetilde{M}$  on  $\mathbb{P}^n_k = \operatorname{Proj} R$ . In the spectral sequence  $\{\mathbb{E}^{p,q}_r\}$  with  $\mathbb{E}^{p,q}_1 = \operatorname{Hom}_R(K_p, H^q_{\mathfrak{m}}(M))$  $\stackrel{\kappa}{\Rightarrow} \mathrm{H}^{p+q}(B^{\bullet\bullet}) \cong \mathrm{Ext}_{R}^{p+q}(k,M),$ 

- $\varphi_i : \mathrm{H}^i(B^{\bullet \bullet}) = \mathrm{Ext}^i_R(k, M) \to \mathrm{E}^{0,i}_{\infty} = \mathrm{E}^{0,i}_1 = \mathrm{H}^i_{\mathfrak{m}}(M)$   $\psi_i : \mathrm{E}^{0,n+1}_{n-i+2} = [0 : \mathfrak{m}]_{\mathrm{H}^{n+1}_{\mathfrak{m}}(M)} \to \mathrm{E}^{n-i+2,i}_{n-i+2} = \mathrm{H}^i_{\mathfrak{m}}(M)(n-i+2)^{\oplus e_i}$

are isomorphisms

Let  $R = k[x_0, \dots, x_m]$  and  $S = k[y_0, \dots, y_n]$  be the polynomial rings. A Segre product of R and S is defined as  $R\#S = \bigoplus_{\ell \in \mathbb{Z}} (R_{\ell} \otimes_k S_{\ell})$ , which is a graded ring. Proj  $R\#S\cong\operatorname{Proj} R\times\operatorname{Proj} S$ . For a graded R-module M and a graded S-module N, a Segre product of M and N is defined as  $M\#N=\bigoplus_{\ell\in\mathbb{Z}}(M_{\ell}\otimes_k N_{\ell})$ , which is a graded (R#S)-module. Let  $I^{\bullet}$  be the minimal injective resolution of a graded R-module M. Let  $J^{\bullet}$  be the minimal injective resolution of a graded S-module N. We take  $I^i = I^i \oplus I^i$ where  $\operatorname{Ass}_R('I^i) = \{\mathfrak{m}\}, \mathfrak{m} \not\in \operatorname{Ass}_R(''I^i) \text{ and } J^i = 'J^i \oplus ''J^i, \text{ where}$  $\operatorname{Ass}_R('I^i) = \{\mathfrak{m}\}, \ \mathfrak{m} \notin \operatorname{Ass}_R(''I^i).$  Then let us put  $\bar{I}^{\bullet} = (0 \to M \xrightarrow{\varepsilon} ''I^{\bullet}[-1])$ and  $\bar{J}^{\bullet} = (0 \to N \xrightarrow{\varepsilon} {}''J^{\bullet}[-1])$ . Now we put T = R # S and  $\mathfrak{m} = T_+$ . Let us take a complex  $W^{\bullet} = (0 \to M \# N \to ("I^{\bullet} \# "J^{\bullet})[-1])$ , that is,  $W^{\ell} = \bigoplus_{i+j=\ell-1} ("I^i \# "J^j)$  for  $\ell \geq 1$ . Then we have  $W^{\bullet} \cong \mathbb{R}\Gamma_{\mathfrak{m}}(M \# N)$ .

Thanks to the construction of a resolution  $W^{\bullet}$ , we will describe explicitly cycle elements of the cohomology modules of the Segre product, and we will obtain the following result.

**Theorem 18.** Let  $R = k[x_0, \dots, x_m]$  and  $S = k[y_0, \dots, y_n]$  be the polynomial rings over a field k. Let  $E_i$  be an i-th syzygy R-module for  $2 \le i \le m+1$ and  $F_j$  be a j-th syzygy S-module for  $2 \leq j \leq n+1$ . Put  $M=E_i(a)$  and  $N = F_i(b)$  for  $a, b \in \mathbb{Z}$ .

- (1) In case (i,j) = (m+1,n+1), M#N is Buchsbaum if and only if
- $\mathfrak{m}(M \# H_{\mathfrak{m}}^{n+1}(N)) = 0 \text{ and } \mathfrak{m}(H_{\mathfrak{m}}^{m+1}(M) \# N) = 0.$ (2) In case  $(i, j) \neq (m + 1, n + 1)$ , M # N is Buchsbaum if and only if  $M \# H_{\mathfrak{m}}^{n+1}(N) = 0$  and  $H_{\mathfrak{m}}^{m+1}(M) \# N = 0$ .

Finally we end with posing the following problem.

**Problem 19.** Let  $\mathcal{E}$  be a vector bundle on  $X = \mathbb{P}^m_k \times \mathbb{P}^n_k$ . Give cohomological criteria whether  $\mathcal{E}$  is a direct sum of line bundles of  $p_1^*\Omega_{\mathbb{P}^m}^i(a)\otimes p_2^*\Omega_{\mathbb{P}^n}^j(b)$ with some restriction for i, j, a and b.

## References

- [1] E. Ballico and F. Malaspina, Regularity and cohomological splitting conditions for vector bundles on multiprojective spaces, J. Algebra 345 (2011), 137–149.
- [2] M. C. Chang, Characterization of arithmetically Buchsbaum subschemes of codimension 2 in  $\mathbb{P}^n$ , J. Differential Geom. 31 (1990), 323–341.
- [3] S. Goto, Maximal Buchsbaum modules over regular local rings and a structure theorem for generalized Cohen-Macaulay modules, ASPM 11(1987), 39-64.
- [4] S. Goto and K.-i. Watanabe, On graded rings, I, J. Math. Soc. Japan, 30(1978), 179 - 213.
- [5] G. Horrocks, Vector bundles on the punctual spectrum of a ring, Proc. London Math. Soc. 14 (1964), 689 - 713.
- C. Miyazaki, Spectral sequence theory of graded modules and its application to the Buchsbaum property and Segre products, J. Pure Appl. Algebra, 85(1993), 143-161.
- C. Miyazaki, Spectral sequence theory for generalized Cohen-Macaulay graded modules, Commutative Algebra, pp. 164-176, World Sci. Publ., 1994.
- [8] C. Miyazaki, A cohomological criterion for splitting of vector bundles on multiprojective space, Proc. Amer. Math. Soc., 143 (2015), 1435–1440.
- [9] C. Miyazaki, Buchsbaum criterion of Segre products of vector bundles on multiprojective space, preprint.
- [10] J. Stückrad and W. Vogel, Buchsbaum rings and applications, Springer, 1986.

KUMAMOTO UNIVERSITY

E-mail address: cmiyazak@educ.kumamoto-u.ac.jp