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1. Castelnuovo-Mumford Regularity Basics

Let k be an algebraically closed field. Let S = k[X0, · · · , XN ] be the polynomial
ring over k. Let m = S+ = (X0, · · · , Xn) be the homogeneous maximal ideal of S.
Let PN

k = ProjS be the projective N -space.

Definition 1.1 ([21]). Let F be a coherent sheaf on PN
k . Let m be an integer. The

coherent sheaf F is said to be m-regular if

Hi(PN
k ,F(m− i)) = 0

for i ≥ 1. This condition is equivalent to saying that

Hi(PN
k ,F(j)) = 0

for all i and j with i ≥ 1 and i+ j ≥ m

Proposition 1.2 ([21]). If F is m-regular, then F(m) is generated by global sec-
tions.

Remark 1.3. Let (X,L) be a polarized variety such that L is generated by global
sections. A coherent sheaf F on X is said to be m-regular if

Hi(PN
k ,F ⊗ Lm−i) = 0

for i ≥ 1. This condition is equivalent to saying that

Hi(PN
k ,F ⊗ Lj) = 0

for all i and j with i ≥ 1 and i+j ≥ m. If F is m-regular, then F⊗Lm is generated
by global sections.

Definition 1.4. For a coherent sheaf F , regF is defined as the least integer m
such that F is m-regular. We call regF as the Castelnuovo-Mumford regularity of
F . For a projective scheme X ⊆ PN

k , regX is defined as reg IX , where IX is the
ideal sheaf of X, and is called as the Castelnuovo-Mumford regularity of X.

Let IX = Γ∗IX = ⊕ℓ∈ZΓ(P
N
k , IX(ℓ)) be the defining ideal of X. Let R = S/IX

be the coordinate ring of X. Then we have the minimal free resolution of IX as
graded S-module

0 → Fs → · · · → F1 → F0 → IX ,

where Fi = ⊕jS(−αij).
1



2 CHIKASHI MIYAZAKI

Proposition 1.5 ([4, 8]). Under the above condition, we have

regX = max
i,j

{αij − i}.

Proof. “≤” is an easy consequence of the free resolution of cohomologies. “≥”
follows from (1.2). 2

The Castelnuovo-Mumford regularity measures a complexity of the defining ideal
of projective scheme. The purpose of our study is to describe the Castelnuovo-
Mumford regularity in terms of the basic invariants of projective scheme.

Remark 1.6. We always have regX ≥ 1. If X is nondegenerate, that is, IX is
generated by elements of degree ≥ 2, then regX ≥ 2.

Conjecture 1.7 (Regularity Conjecture [8]). Let X ⊆ PN
k be a nondegenerate

projective variety. Then we have

regX ≤ degX − codimX + 1.

Remark 1.8. The conjecture can be extended for a nondegenerate reduced scheme
which is connected in codimension 1. However, the hypotheses “irreducible” and
“reduced” are indispensable. In fact, a nondegenerate double line in P3

k is irre-
ducible, but the r.h.s. of the inequality is 1. Moreover, a skew line in P3

k is nonde-
generate and reduced, but the r.h.s. is also 1. If you prefer a version of polarized
variety, the conjecture is described as

reg (X,L) ≤ ∆(X,L) + 2

for a nondegenerate polarized variety (X,L) such that L is generated by global
sections.

The Regularity Conjecture is proved for dimX = 1 by Gruson-Lazarsfeld-
Peskine [10], and is proved if X is a smooth surface and char k = 0 by Lazarsfeld
[15]. For higher dimensional case, an weaker bound is proved under the assumption
that X is smooth and k = C. For dimX = 3, regX ≤ degX−codimX+2 is proved
by Kwak [14]. For dimX = n ≤ 14, regX ≤ degX − codimX + (n − 2)(n − 1)/2
is proved by Chiantini-Chiarli-Greco [5].

2. Gruson-Lazarsfeld-Peskine Theorem

First of all, we state the Gruson-Lazarsfeld-Peskine Theorem, (2.1) and (2.2) for
projective curves.

Theorem 2.1. Let C ⊆ PN
k be a nondegenerate projective curve of degree d.

regC ≤ d+ 2−N

Theorem 2.2. Let C ⊆ PN
k be a nondegenerate projective curve of degree d. If

g = pg(C) ≥ 1, then regC ≤ d+1−N unless C is a smooth elliptic normal curve.

Remark 2.3. If regC ≤ n, then C has no (n+ 1)-secant lines by Bezout theorem.

Theorem 2.1 follows immediately from (2.4) and (2.5). In this section, we will
describe a sketch of the proof of (2.4).

Lemma 2.4. Let p : C̃ → C ⊆ PN
k be the normalization of C. Let M = p∗ΩPN

k
(1).

Assume H1(C̃,∧2M⊗A) = 0 for some A ∈ Pic C̃. Then regC ≤ h0(A).
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Lemma 2.5. Let p : C̃ → C ⊆ PN
k . Let d = deg p∗OPN

k
(1). Then there exists an

ample line bundle A such that h0(A) = d+ 2−N and h1(∧2M⊗A) = 0.

Sketch of the proof of Lemma 2.4. Let OC̃(1) = p∗OPN
k
(1) and V = H0(OPN

k
(1)) ⊆

H0(OC̃(1)). Let π : C̃ × PN
k → C̃ be the first projection, and let f : C̃ × PN

k → PN
k

be the second projection. Let Γ be the graph of p : C̃ → PN
k . By using the exact

sequences

0 → π∗M → V ⊗O
C̃×PN

k
→ π∗OC̃(1) → 0

∥
0 → f∗ΩPN

k
(1) → V ⊗O

C̃×PN
k

→ f∗OC̃(1) → 0,

the graph Γ(⊆ C̃ ×PN
k ) is defined by a composite map π∗M → f∗OC(1). Then we

have the exact sequence

π∗M⊗ f∗OPN
k
(−1) → O

C̃×PN
k

→ OΓ → 0.

After tensoring with π∗A, we take the Koszul resolution

π∗(∧2M⊗A)⊗f∗OPN
k
(−2) → π∗(M⊗A)⊗f∗OPN

k
(−1) → π∗A → OΓ⊗π∗A → 0,

which gives the exact sequences

π∗(∧2M⊗A)⊗ f∗OPN
k
(−2) → F1 → 0, (1)

0 → F1 → π∗(M⊗A)⊗ f∗OPN
k
(−1) → F0 → 0 (2)

and

0 → F0 → π∗A → OΓ ⊗ π∗A → 0. (3)

Note that Rjf∗ = 0 for j ≥ 2 and Rjf∗((π
∗ ∧i M ⊗ A) ⊗ f∗OPN

k
(−i)) =

Hj(C̃,∧iM⊗A)⊗OPN
k
(−i) by projection formula. The sequence (1) gives

H1(∧2M⊗A)⊗OPN
k
(−2) → R1f∗F1 → 0,

and we have R1f∗F1 = 0 by the assumption. Then the sequence (2) gives an exact
sequence

0 → F1 → H0(M⊗A)⊗OPN
k
(−1) → f∗F0 → 0 (4)

and an isomorphism

H1(M⊗A)⊗OPN
k
(−1) ∼= R1f∗F0,

which implies that R1f∗F0 is locally free. Furthermore, the sequence (3) gives an
exact sequence

0 → f∗F0 → H0(A)⊗OPN
k

→ p∗A → R1f∗F0 → H1(A)⊗OPN
k

→ 0.

Since a morphism from a torsion sheaf p∗A to a locally free sheaf R1f∗F0 is zero,
we have a short exact sequence
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0 → f∗F0 → H0(A)⊗OPN
k

→ p∗A → 0. (5)

By (4) and (5), we have a exact sequence

H0(M⊗A)⊗OPN
k
(−1) → H0(A)⊗OPN

k
→ p∗A → 0.

Let J (⊆ OPN
k
) be the zeroth Fitting ideal of p∗A, explicitly, J is the image of

∧n0u, where u : H0(M ⊗ A) ⊗ OPN
k
(−1) → H0(A) ⊗ OPN

k
and n0 = h0(A), see,

e.g., [6] for the definition of Fitting ideals. Since Supp p∗A = C, we see J ⊆ IC .
On the other hand, Supp IC/J is finite. Hence we have only to show that J is
n0-regular. By taking the Eagon-Northcott complex of u, see (2.6), we have a
complex

· · · → OPN
k
(−n0 − 2)⊕ → OPN

k
(−n0 − 1)⊕ → OPN

k
(−n0)

⊕ ε→ J → 0

such that ε is surjective and the complex is exact away from C, which gives J is
n0-regular.

2

Proposition 2.6. Let E and F be locally free sheaves of rank E = e and rankF = f
on a scheme X. Let u : E → F . Then there is a complex

0 → ∧eE ⊗ Se−f (F∗) → · · · → ∧f+1E ⊗ S1(F∗) → ∧fE → ∧fF → 0,

which is called as the Eagon-Northcott complex. If u : E → F is surjective, then
the complex is exact.

3. Generic Projection and Regularity Conjecture

In this section, we describe the higher dimensional case for the regularity con-
jecture. The following theorem extends the result of Kwak for 3-fold [14].

Theorem 3.1. ([5]) Let X be a nondegenerate smooth projective variety of PN
C . If

n = dimX ≤ 14, then regX ≤ degX − codimX + 1 + (n− 2)(n− 1)/2.

We will describe an idea of the proof of (3.1). Let p : X(⊆ PN
C ) → Pn+1

C be a
generic projection. The proof consists of (3.2), (3.4) and (3.5).

Lemma 3.2. Let F = G ⊕OPn+1
C

(−3)⊕ · · · ⊕OPn+1
C

(−n). If there is a surjective

morphism F → p∗OX , then regX ≤ d−N + n+ 1 + (n− 1)(n− 2)/2.

The proof of (3.2) proceeds as in Lazarsfeld [15].

Definition 3.3. Let p : X(⊆ PN
C ) → Pn+1

C be a projection. Let Sj = {z ∈
Pn+1
C | deg p−1(z) = j}. The projection p is said to be good if dimSj ≤ max{−1, n−

j + 1} for all j.

Lemma 3.4. ([5, (2.4)]) If p : X(⊆ PN
C ) → Pn+1

C is good, there exists a surjective
morphism F → p∗OX .

The result of Kwak is extended to the higher dimensional case thanks to (3.4).

Lemma 3.5. (Mather’s theory [16]) If n ≤ 14, then p is good.
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4. Uniform Position Principle, Socle Lemma, and
Castelnuovo-Mumford Regularity

Let C be a nondegenerate projective curve of PN+1
k . Let H be a generic hy-

plerplane and X = C ∩ H ⊆ H ∼= PN
k . In this section, we will study a bound

regX ≤ ⌈(degX − 1)/N⌉+ 1.

Definition 4.1. Let X(⊆ PN
k ) be a reduced zero-dimensional scheme such that X

spans PN
k . The zero-dimensional scheme X is said to be in uniform position if the

Hilbert function of Z is described as HZ(t) = min{HX(t),degZ} for any subscheme
Z of X. This condition is equivalent to saying that for any subschemes Z1 and Z2

with degZ1 = degZ2, h
0(IZ1(ℓ)) = h0(IZ2(ℓ)) for all ℓ ∈ Z. The zero-dimensional

scheme X is said to be in linear general position if any N + 1 points of X span
PN
k . The zero-dimensional scheme X is said to be in linear semi-uniform position if

there are integers v(i,X), simply written as v(i), 0 ≤ i ≤ N such that every i-plane
L in PN

k spanned by linearly independent i + 1 points of X contains exactly v(i)
points of X.

Remark 4.2. Under the condition, we note that “uniform position” implies “linear
general position”, see [13, (4.3)], and “linear general position” implies “linear semi-
uniform position”.

Remark 4.3. A generic hyperplane section of a nondegenerate projective curve is in
linear semi-uniform position, see [2], and in uniform position if char k = 0, see [1].

Definition 4.4. Let R be the coordinate ring of a zero-dimensional scheme
X ⊆ PN

k . Let h = h(X) = (h0, · · · , hs) be the h-vector of X ⊆ PN
k , where

hi = dimk[R]i − dimk[R]i−1 and s is the largest integer such that hs ̸= 0.

Remark 4.5. Under the above condition, we have h0 = 1, h1 = N , and h0+· · ·+hs =
degX. Let t = min{t|Γ(PN

k ,OPN
k
(t)) → Γ(X,OX(t)) is surjective}. Then we have

regX = t+ 1 = s+ 1

Proposition 4.6. Let C be a nondegenerate projective curve of PN+1
k over an

algebraically closed field k. Let H be a generic hyplerplane and X = C ∩H ⊆ H ∼=
PN
k . Let h = h(X) = (h0, · · · , hs) be the h-vector of X ⊆ PN

k .
(i) If char k = 0, then hi ≥ h1 for i = 1, · · · , s− 1.
(ii) If char k > 0, then h1 + · · ·+ hi ≥ ih1 for i = 1, · · · , s− 1.

(i) is an easy consequence of Uniform Position Lemma, see, e.g. [1]. Also, [13,
Section 4] is a good reference. (ii) follows from [2].

Proposition 4.7. Let X be a generic hyperplane section of a nondegenerate pro-
jective curve. Then

regX ≤
⌈
degX − 1

codimX

⌉
+ 1.

Now we will give two proofs of (4.7). The first one uses the classical Castelnuovo
method, which works only for the case char(k) = 0. The second one uses (4.6) for
any characteristic case.

Proof. For char k = 0, we need to show that H0(OPN
k
(ℓ)) → H0(OX(ℓ)) is sur-

jective, where ℓ = ⌈(d − 1)/N⌉. Let P be a closed point of X. Then we put
X\{P} = {P1,1, · · · , P1,N , P2,1, · · · , P2,N , · · · , Pℓ−1,1, · · · , Pℓ−1,N , Pℓ,1, · · · , Pℓ,m},
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where m = d−1−N(ℓ−1). Since X is in linear general position, we can take ℓ hy-
perplanes H1, · · · ,Hℓ of PN

k such that X ∩Hi = {Pi1, · · · , PiN} for i = 1, · · · , ℓ− 1
and X ∩Hℓ = {Pℓ1, · · · , Pℓm}. Thus we have X ∩ (H1 ∪ · · · ∪Hℓ) = X\{P}, which
implies the assertion.

For any characteristic case, let R be the coordinate ring of a zero-dimensional
scheme X ⊆ PN

k . By (4.6), we have h1 + · · ·+ hi ≥ ihi for all i = 1, · · · , s− 1, that
is, HX(t) ≥ min{deg(X), tN + 1} Since deg(X) = h0 + · · · + hs and codim(X) =
h1 = N , we obtain ⌈(deg(X) − 1)/codim (X)⌉ = ⌈(h1 + · · · + hs)/h1⌉ ≥ s. Hence
the assertion is proved.

2

Now we will study Castelnuovo-type bounds on the regularity for higher dimen-
sional case. Let X ⊆ PN

k be a nondegenerate projective variety of dimX = n. Let
H be a generic hyperplane.

Remark 4.8. Under the above condition, we have reg (X ∩ H) ≥ regX. If X is
ACM, i.e., the coordinate ring R is Cohen-Macaulay, then reg (X ∩ H) = regX.
More generally, if X is arithmetically Buchabaum, i.e., R is Buchsbaum, then
reg (X ∩H) = regX, see [23].

Proposition 4.9 ([11, 23]). For a nondegenerate progective variety X ⊆ PN
k , if X

is arithmetically Buchsbaum, then

regX ≤
⌈
degX − 1

codimX

⌉
+ 1.

We will introduce an invarinant evaluating the intermediate colomologies of the
projective varieties. Let X ⊆ PN

k be a projective scheme. A graded S-module
Mi(X) = ⊕ℓ∈ZH

i(PN
K , IX(ℓ)), is called the deficiency module of X, which is a

generalization of the Hartshorne-Rao module for the curve case. Then we define
k(X) as the minimal nonnegative integer v such that mvMi(X) = 0 for 1 ≤ i ≤
dim(X), see [17], if there exists. If not, we put k(X) = ∞. It is known that the
numbers k(X) are invariant in a liaison class, see [17].

Further, we define k̄(X) as the maxmal number k(X ∩ V ) for any complete
intersection V of PN

k with codim (X ∩ V ) = codim (X) + codim (V ), possibly V =
PN
k .

Remark 4.10. In general, k(X) ≤ k̄(X). X is locally Cohen-Macaulay and equi-
dimensional if and only if k̄(X) < ∞. X is ACM if and only if k(X) = 0, equiva-
lently, k̄(X) = 0.

Conjecture 4.11 ([19]). Let X be a nondegenerate irreducible reduced projective
variety in PN

K over an algebraically closed field k. Then we have

reg (X) ≤
⌈
deg(X)− 1

codim (X)

⌉
+max{k̄(X), 1}.

Furthermore, assume that deg(X) is large enough. Then the equality holds only if
X is a divisor on a variety of minimal degree.

Theorem 4.12 ([18]). Let X be a nondegenerate irreducible reduced projective
variety in PN

K over an algebraically closed field k. Assume that X is not ACM.
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Then we have

reg (X) ≤
⌈
deg(X)− 1

codim (X)

⌉
+ (k̄(X)− 1) dimX + 1.

Furthermore, assume that deg(X) is large enough. Then the equality holds only if
X is a divisor on a rational ruled surface.

Theorem 4.13. Let C ⊆ PN
k be a nondegenerate projective curve over an alge-

braically closed field of char k = 0. Assume that C is not ACM. Then

regC ≤
⌈
degC − 1

codimC

⌉
+ k(C).

Assume that degC ≥ (codimC)2 + 2codimC + 2. If the equality holds, then C lies
on a rational ruled surface.

Proof. Let X = C ∩ H be a generic hyperplane section. Let m = regX. Let
k = k(C). From the exact sequence

H1
∗(IC)(−1)

·h→ H1
∗(IC) → H1

∗(IX) → H2
∗(IC)(−1)

·h→ H2
∗(IC)(−1),

where h is a defining equation of H, we have h2(IC(m−2)) ≤ h2(IC(m−1)) ≤ · · · ≤
0 and H1(IC(m+k−1)) = h ·H1(IC(m+k−2)) = · · · = hk ·H1(IC(m+k−1)) = 0.
Hence we have

regC ≤ regX + k − 1 ≤
⌈
degC − 1

codimC

⌉
+ k(C).

For the second part, we will use (4.14), which is a consequence of the theory
of 1-generic matrices [7]. Let (h0, · · · , hs) be the h-vector of the one-dimensional
graded ring R. In other words, we write hi = dimK(Ri) − dimK(Ri−1) for all
nonnegative integers i, and s for the maximal integer such that hs ̸= 0. Note that
h0 = 1, h1 = N , s = a(R) + 1 and deg(X) = h0 + · · · + hs. Suppose that X does
not lie on a rational normal curve. By (4.14), we have that hi ≥ h1 + 1 for all
2 ≤ i ≤ s− 2, and hs−1 ≥ h1. Thus we have

deg(X)− 1

N
=

h1 + · · ·+ hs

h1

≥ 1 +

s−3︷ ︸︸ ︷
N + 1

N
+ · · ·+ N + 1

N
+1 +

hs

N

= a(R) +
a(R)− 2 + hs

N

≥ a(R) +
a(R)− 1

N
.

Since a(R) + 1 ≥ (deg(X)− 1)/N , we see that a(R) ≤ N + 1. Hence we have

deg(X)− 1 ≤ N(a(R) + 1) ≤ N(N + 2),

which contradicts the hypothesis. Now let C be a nondegenerate projective curve.

Let X = C ∩H be a generic hyperplane section. Since X is contained in a rational
normal curve Z in H(∼= PN

k ). We have only to show there exists a surface Y
containing C such that Y ∩ H = Z. There is an isomorphism Γ(I

Z/PN
k
(2)) ∼=

Γ(IX/H(2)). Indeed, If there exists a hyperquadric Q such that X ⊆ Q and Z ̸⊆
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Q, then X ⊆ Z ∩ Q by Bezout Theorem. On the other hand, Γ(I
C/PN

k
(2)) →

Γ(IX/H(2)) is surjective. Indeed, let K be the kernel of H1
∗IC(−1)

·h→ H1
∗IC . From

the exact sequence

Γ∗IC → Γ∗IX → H1
∗IC(−1)

·h→ H1
∗IC → H1

∗IX ,

we need to prove that [K]2 = 0. By Socle Lemma (4.15), a−(K) > a−(H
1
∗IX) ≥ 2.

Thus we see that Z is the intersection of the hyperquadrics containing X and
that Y ′ is the intersection of the hyperquadrics of C. Since Y ′ ∩H = Z, there is
an irreducible components of Y ′ such that Y ∩H = Z. 2

Lemma 4.14. ([24, (2.3)]) Assume that X is in uniform position. If X does not
lie on a rational normal curve, then hi ≥ h1 + 1 for 2 ≤ i ≤ s− 2.

Example 1. There is a counterexample in case Let X a complete intersection
of type (2, 2, 4) in P3

k. In this case, regX = 6 and degX = 16, so regX =
⌈(degX − 1)/codimX⌉ + 1. However, X does not lie on a rational normal curve.
So we really need the condition on the degree deg(X) ≥ N2 + 2N + 2.

Example 2. Let C be a smooth non-hyperelliptic curve of genus g = rmpg(C) ≥ 5.

Let C ⊆ Pg−1
k be the canonical embedding. Then regC = ⌈(degC−1)/(g−2)⌉+1 =

4. In this case, C is contained in a surface of minimal degree if and only if C is
either trigonal or plane quintic.

Lemma 4.15 (Socle Lemma [12]). Let S = k[X0, · · · , XN ] be the polynomial ring
over a field k of charateristic 0. For a graded S-module N , we define a−(N) =
min{i|[N ]i ̸= 0}. Let M( ̸= 0) be a finitely generated graded S-module. For a exact
sequence of graded S-modules

0 → K → M(−1)
·h→ M → C → 0,

where h ∈ S1 is a generic element. If K ̸= 0, then a−(K) > a−([0 : m]C).

Corollary 4.16. Let C ⊆ P3
k be a space curve with maximal regularity. Assume

that char(k) = 0, degC > 10 and C is not ACM. Then C is a divisor of either type
(a, a+ 2) or (a, a+ 3) on a smooth quadric surface.

Proof. The assertion follows immediately from (4.13) 2

5. Generic Hyperplane Section of Projective Curve in Positive
Characteristic

In this section, we study the regularity bound of Castelnuovo-type for positive
characteristic case. In Section 4, we show that if a generic hyperplane section of
projective curve with its degree large enough has a maximal regularity, then the
zero-dimensional scheme lie on a rational normal curve in characteristic zero case.
We will describe how to extend this result to the positive characteristic case by the
classical method of Castelnuovo. There is a relationship between the monodromy
group of the projective curve and the configuration of the generic hyperplane section
of the curve, as following Rathmann [22]. Let C ⊆ PN+1

k and X ⊆ PN
k be again

a nondegenerate projective curve and its generic hyperplane section respectively.
Let M ⊆ C × (PN+1

k )∗ be the incidence correspondence parametrizing the pairs

(x,H) ∈ M , that is, a point x of C and a hyperplane H of PN+1
k such that x is

contained in H. Since M is a PN
k -bundle over C via the first projection, M is
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irreducible and reduced. By Bertini’s theorem, M is generically étale finite over
P = (PN+1

k )∗ via the second projection. Thus the function field K(M) of M is
separable finite over K(P ), in particular, K(M) is a simple extension of K(P ). So
we fix a splitting field Q for this simple extension. Let GC be the Galois group
Gal(Q/K(P )). Then GC is a subgroup of the full symmetric group Sd and is called
the monodromy group of C ⊆ PN

k , where d = deg(C). The following is a basic
result on the monodromy group of projective curve.

Proposition 5.1. Let X ⊆ PN
k be a generic hyperplane section of nondegenerate

projective curve C ⊆ PN+1
k .

(i) (See [1]). If char(k) = 0, then GC = Sd.
(ii) (See [22, (1.8)]). If either GC = Sd or GC = Ad, then X is in uniform position.
(iii) (See [22, (1.6)]). Let 1 ≤ t ≤ N + 1. GC is t-transitive if and only if any t
points of X is linearly independent.

Proposition 5.2. (See [22, (2.5)]). Let X be a generic hyperplane section in PN of
a nondegenerate projective curve C of PN+1 for N ≥ 3. Let GC be the monodromy
group of C. If X is not in uniform position, then either of the following holds:
(a) v(1) = 3, and GC is exactly 2-transitive.
(b) v(1) = 2, v(2) ≥ 4, and GC is exactly 3-transitive.
(c) deg(C) = 11, 12, 23 or 24, and GC is the Mathieu group M11, M12, M23, M24

respectively. Moreover M11 and M23 are exactly 4-transitive and M12 and M24 are
exactly 5-transitive.

Theorem 5.3 ([3, 20]). Let X ⊆ PN
k be a generic hyperplane section of a nonde-

generate projective curve for N ≥ 3. Assume that X is not in uniform position and
deg(X) ≥ N2 + 2N + 2. Then we have reg (X) ≤ ⌈(deg(X)− 1)/N⌉.

What we have to prove is that H0(OPN
k
(t)) → H0(OX(t)) is surjective, that is,

H1(IX(t)) = 0, where t = ⌈(deg(X)− 1)/N⌉ − 1.

Lemma 5.4. Under the condition of (5.3), let t = ⌈(deg(X)− 1)/N⌉− 1. For any
fixed point P ∈ X, there exists a (possibly reducible) hypersurface F of degree t in
PN
k such that X ∩ F = X\{P}.

Proof. So we will prove for the case N = 3 by the classical method. Since v(1) = 3,
we have v(2) ≥ 7 and put v = v(2). For a point P of X, we fix 2 points Q1

and Q2 in X\{P}. Then we take different 2-planes L1, · · · , La containing the line
ℓ = ℓ(Q1, Q2) spanned by Q1 and Q2 such that the union ∪a

j=1Lj covers X. We
remark that a ≥ 3. Since each 2-plane contains exactly v points of X and the
line ℓ contains exactly 3 points of X, we see d = a(v − 3) + 3. We may assume
that P is contained in La. Let b = ⌈(v − 3)/2⌉. Since (X ∩ La)\{P,Q1, Q2}
consists of exactly v − 3 points, there are 2-planes L′

1, · · · , L′
b such that P ̸∈ L′

i for
i = 1, · · · , b and the union ∪b

j=1L
′
j of 2-planes covers (X ∩ La)\{P,Q1, Q2}. By

taking F = (∪a−1
i=1 Li)∪ (∪b

j=1L
′
j), we have (X ∩F ) = X\{P} and the degree of the

union F of 2-planes is a+b−1. Thus we have only to show that (a−1)+⌈(v−3)/2⌉ ≤
⌈((av− 3a+3)− 1)/3⌉− 1. The inequality (a− 1)+ (v− 3)/2 ≤ (av− 3a+2)/3− 1
is equivalent to saying that (2a − 3)(v − 6) ≥ 5, which is easily shown for v ≥ 7
and a ≥ 4. Moreover, the case v = 7 and a = 3 satisfies (a − 1) + ⌈(v − 3)/2⌉ =
⌈(av − 3a+ 2)/3⌉ − 1. Hence the assertion is proved. 2
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