CASTELNUOVO-MUMFORD REGULARITY
FOR PROJECTIVE VARIETIES

CHIKASHI MIYAZAKI

This paper is based on the survey talk on the Castelnuovo-Mumford regularity
for projective varieties at Chuo University on December 2005.

1. CASTELNUOVO-MUMFORD REGULARITY BASICS

Let k be an algebraically closed field. Let S = k[Xo,--- , Xn] be the polynomial
ring over k. Let m = S, = (Xp,---,X,,) be the homogeneous maximal ideal of S.
Let PY = Proj S be the projective N-space.

Definition 1.1 ([21]). Let F be a coherent sheaf on PY'. Let m be an integer. The
coherent sheaf F is said to be m-regular if

HY(PN, F(m —i)) =0
for ¢ > 1. This condition is equivalent to saying that
H'(BY, F(j) =0
foralliand j withi>1andi+j>m

Proposition 1.2 ([21]). If F is m-regular, then F(m) is generated by global sec-
tions.

Remark 1.3. Let (X, L) be a polarized variety such that £ is generated by global
sections. A coherent sheaf F on X is said to be m-regular if
H{(PY, Fo L™ ) =0
for i > 1. This condition is equivalent to saying that
HI(PY, F @ £7) = 0
for all 7 and j with ¢ > 1 and i+j > m. If F is m-regular, then F® L™ is generated
by global sections.

Definition 1.4. For a coherent sheaf F, reg F is defined as the least integer m
such that F is m-regular. We call reg F as the Castelnuovo-Mumford regularity of
F. For a projective scheme X C PY | reg X is defined as regZy, where Zx is the
ideal sheaf of X, and is called as the Castelnuovo-Mumford regularity of X.

Let Ix =T.Ix = @, 7l (PY,Zx({)) be the defining ideal of X. Let R = S/Ix
be the coordinate ring of X. Then we have the minimal free resolution of Ix as
graded S-module

0=>Fs— = F = F—Ix,
where Fz = @jS(*Olij).
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Proposition 1.5 ([4, 8]). Under the above condition, we have

reg X = n}%x{aij — i}

Proof. “<” is an easy consequence of the free resolution of cohomologies. “>”
follows from (1.2). O

The Castelnuovo-Mumford regularity measures a complexity of the defining ideal
of projective scheme. The purpose of our study is to describe the Castelnuovo-
Mumford regularity in terms of the basic invariants of projective scheme.

Remark 1.6. We always have reg X > 1. If X is nondegenerate, that is, Ix is
generated by elements of degree > 2, then reg X > 2.

Conjecture 1.7 (Regularity Conjecture [8]). Let X C PY be a nondegenerate
projective variety. Then we have

reg X < deg X — codim X + 1.

Remark 1.8. The conjecture can be extended for a nondegenerate reduced scheme
which is connected in codimension 1. However, the hypotheses “irreducible” and
“reduced” are indispensable. In fact, a nondegenerate double line in P is irre-
ducible, but the r.h.s. of the inequality is 1. Moreover, a skew line in P} is nonde-
generate and reduced, but the r.h.s. is also 1. If you prefer a version of polarized
variety, the conjecture is described as

reg (X, L) < A(X,L)+2

for a nondegenerate polarized variety (X, L) such that £ is generated by global
sections.

The Regularity Conjecture is proved for dim X = 1 by Gruson-Lazarsfeld-
Peskine [10], and is proved if X is a smooth surface and chark = 0 by Lazarsfeld
[15]. For higher dimensional case, an weaker bound is proved under the assumption
that X is smooth and k = C. For dim X = 3, reg X < deg X —codim X +2 is proved
by Kwak [14]. For dim X =n < 14, reg X < deg X — codim X + (n — 2)(n — 1)/2
is proved by Chiantini-Chiarli-Greco [5].

2. GRUSON-LAZARSFELD-PESKINE THEOREM

First of all, we state the Gruson-Lazarsfeld-Peskine Theorem, (2.1) and (2.2) for
projective curves.

Theorem 2.1. Let C' C Pg be a nondegenerate projective curve of degree d.
regC<d+2-—N

Theorem 2.2. Let C C PY be a nondegenerate projective curve of degree d. If
g=pg(C) > 1, thenregC < d+1— N unless C is a smooth elliptic normal curve.

Remark 2.3. If reg C < n, then C has no (n + 1)-secant lines by Bezout theorem.

Theorem 2.1 follows immediately from (2.4) and (2.5). In this section, we will
describe a sketch of the proof of (2.4).

Lemma 2.4. Letp: C — C C PY be the normalization of C. Let M = p*QPN(l),
. . k
Assume HY(C, AN’ M @ A) =0 for some A € PicC. Then regC < h°(A).
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Lemma 2.5. Letp:C — C CPN. Letd = degp*O]P,N(l). Then there exists an
k
ample line bundle A such that h°(A) =d+2— N and h'(\°M @ A) = 0.
Sketch of the proof of Lemma 2.4. Let Ox(1) = p*Opn (1) and V = HO((’)PN(I)) C
k k

H(O4(1)). Let 7: C x PY — C be the first projection, and let f: C' x PN — PY
be the second projection. Let I' be the graph of p : C — PY. By using the exact
sequences

0 — m™*M — V®Oéx]P’§€V — 7m0s(1) — 0

0 — f*QPkNu) -+ VeO,py — [10s(1) — 0,

the graph T'(C C x PY) is defined by a composite map 7*M — f*Oc(1). Then we
have the exact sequence

M ® f*O]P,fcv(fl) — OC’XPQI — Or — 0.
After tensoring with 7*A, we take the Koszul resolution

w*(A2M®A)®f*OPkN(—2) — ﬁ(M@A)@f*OPg(—l) — 1A= Or@r* A — 0,

which gives the exact sequences

T (NPM R A) @ f*OPkN(_2) — F1—0, (1)
0— Fu —>7r*(M®A)®f*OPiv(—l)—>fo—>0 (2)

and
0—Fy—-7m"A—Or@7"A—0. (3)

Note that Rif, = 0 for j > 2 and RIf,((m* N M ® A) ® f*OPN(—i)) =
o k
HI(C,ANM @ A) @ Opn (—i) by projection formula. The sequence (1) gives
k
H' (\PM ©® A) © Opn (=2) = R fuF1 = 0,
k
and we have R!f,F; = 0 by the assumption. Then the sequence (2) gives an exact
sequence
0= Fi = H(M®A) @ Opn(-1) = f.Fo =0 (4)
k

and an isomorphism

which implies that R!f,Fy is locally free. Furthermore, the sequence (3) gives an
exact sequence
0— f.Fo —H(A)® Opn = peA = R f.Fo — H'(A) ® Opn — 0.
k k

Since a morphism from a torsion sheaf p,.A to a locally free sheaf R! f, Fy is zero,
we have a short exact sequence
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0— fuFo — HY(A) ® OPkN — peA— 0. (5)

By (4) and (5), we have a exact sequence

HMe A e Ow(—l) - H°(A) ® Oﬂ”’ff — pe A — 0.

Let J(C OIP’N) be the zeroth Fitting ideal of p..A, explicitly, J is the image of
k
A™u, where u : HH(M @ A) ® O]P’N<_1) — H°(A) @ Opny and ng = hO(A), see,
k k

e.g., [6] for the definition of Fitting ideals. Since Suppp.A = C, we see J C Z¢.
On the other hand, SuppZ¢/J is finite. Hence we have only to show that J is
no-regular. By taking the Eagon-Northcott complex of u, see (2.6), we have a
complex

-+ = Opn (=10 = 2) = Opn (—ng = 1)® = Opn (—10)® 5T -0
k k k
such that e is surjective and the complex is exact away from C', which gives J is

np-regular.
O

Proposition 2.6. Let £ and F be locally free sheaves of rank € = e and rank F = f
on a scheme X. Let u: & — F. Then there is a complex

0= ANERSHF) = s AMFERSHF) = ANE = NF =0,
which is called as the Eagon-Northcott complex. If u : € — F is surjective, then
the complex is exact.
3. GENERIC PROJECTION AND REGULARITY CONJECTURE

In this section, we describe the higher dimensional case for the regularity con-
jecture. The following theorem extends the result of Kwak for 3-fold [14].

Theorem 3.1. ([5]) Let X be a nondegenerate smooth projective variety of PN . If
n=dimX <14, thenreg X < deg X — codim X + 1+ (n —2)(n —1)/2.

We will describe an idea of the proof of (3.1). Let p : X(C PY) — PA! be a
generic projection. The proof consists of (3.2), (3.4) and (3.5).

Lemma 3.2. Let F =G & O]P’”H (-3)®---& OPn+1 (—n). If there is a surjective
C C
morphism F — p.Ox, thenreg X <d—N+n+1+ (n—1)(n—2)/2.
The proof of (3.2) proceeds as in Lazarsfeld [15].

Definition 3.3. Let p : X(C PY) — PL™! be a projection. Let S; = {z €
P degp~'(2) = j}. The projection p is said to be good if dim S; < max{—1,n—
j+1} for all j.

Lemma 3.4. ([5, (2.4)]) If p: X(C PY) — PLT! is good, there exists a surjective
morphism F — p,Ox.

The result of Kwak is extended to the higher dimensional case thanks to (3.4).
Lemma 3.5. (Mather’s theory [16]) If n < 14, then p is good.
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4. UNIFORM POSITION PRINCIPLE, SOCLE LEMMA, AND
CASTELNUOVO-MUMFORD REGULARITY

Let C be a nondegenerate projective curve of IP’]ICV 1 Let H be a generic hy-

plerplane and X = CNH C H = PY. In this section, we will study a bound
regX < [(deg X —1)/N]+1.

Definition 4.1. Let X(C PY) be a reduced zero-dimensional scheme such that X
spans IP’kN . The zero-dimensional scheme X is said to be in uniform position if the
Hilbert function of Z is described as Hz(t) = min{Hx (¢), deg Z} for any subscheme
Z of X. This condition is equivalent to saying that for any subschemes Z; and Z5
with deg Z; = deg Za, h%(Zz, (¢)) = h%(Zz,(¢)) for all £ € Z. The zero-dimensional
scheme X is said to be in linear general position if any N + 1 points of X span
IP’kN . The zero-dimensional scheme X is said to be in linear semi-uniform position if
there are integers v (i, X ), simply written as v(i), 0 < i < N such that every i-plane
L in PY spanned by linearly independent i + 1 points of X contains exactly v(3)
points of X.

Remark 4.2. Under the condition, we note that “uniform position” implies “linear
general position”, see [13, (4.3)], and “linear general position” implies “linear semi-
uniform position”.

Remark 4.3. A generic hyperplane section of a nondegenerate projective curve is in
linear semi-uniform position, see [2], and in uniform position if char k = 0, see [1].

Definition 4.4. Let R be the coordinate ring of a zero-dimensional scheme
X C PV. Let h = h(X) = (ho, -+ ,hs) be the h-vector of X C P¥, where
h; = dimy[R]; — dimg[R];—1 and s is the largest integer such that hs # 0.

Remark 4.5. Under the above condition, we have hg = 1, hy = N, and hg+---+hs =
deg X. Let t = min{¢|T'(PY, Opn (1)) = I'(X, Ox (t)) issurjective}. Then we have
k

regX =t+1=s5+1

Proposition 4.6. Let C' be a nondegenerate projective curve of ]P’fcw'l over an
algebraically closed field k. Let H be a generic hyplerplane and X = CNH C H &
PN. Let h = h(X) = (ho, - ,hs) be the h-vector of X C PY.

(i) If chark = 0, then h; > hy fori=1,--- /s — 1.

(i) If chark > 0, then hy + -+ h; > ihy fori=1,--- s —1.

(i) is an easy consequence of Uniform Position Lemma, see, e.g. [1]. Also, [13,
Section 4] is a good reference. (ii) follows from [2].

Proposition 4.7. Let X be a generic hyperplane section of a nondegenerate pro-
jective curve. Then
deg X — 1
reg X < {eg—‘ + 1.

codim X

Now we will give two proofs of (4.7). The first one uses the classical Castelnuovo
method, which works only for the case char(k) = 0. The second one uses (4.6) for
any characteristic case.

Proof. For chark = 0, we need to show that HO(OPN (0)) — H°(Ox(¢)) is sur-
k

jective, where £ = [(d — 1)/N]. Let P be a closed point of X. Then we put
X\{P ={Pi1, ,Pin, Pop, s oy s Pee1ny s Pecans Poas oo Pom s
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where m = d—1— N({—1). Since X is in linear general position, we can take £ hy-
perplanes Hy,- -+, Hy of PY such that XN H; = {P;, - ,Piy}fori=1,--- (-1
and X NHy = {Pp, -+, Pon}. Thus we have X N (H, U---U Hy) = X\{P}, which
implies the assertion.

For any characteristic case, let R be the coordinate ring of a zero-dimensional
scheme X C ]P’iv. By (4.6), we have hy +---+h; > ih; foralli=1,--- ;s —1, that
is, Hx (t) > min{deg(X),tN + 1} Since deg(X) = hg + -+ + hs and codim(X) =
hi1 = N, we obtain [(deg(X) — 1)/codim (X)] = [(h1 + -+ + hs)/h1] > s. Hence
the assertion is proved.

O

Now we will study Castelnuovo-type bounds on the regularity for higher dimen-
sional case. Let X C P be a nondegenerate projective variety of dim X = n. Let
H be a generic hyperplane.

Remark 4.8. Under the above condition, we have reg (X N H) > reg X. If X is
ACM, i.e., the coordinate ring R is Cohen-Macaulay, then reg (X N H) = reg X.
More generally, if X is arithmetically Buchabaum, i.e., R is Buchsbaum, then
reg (X N H) =reg X, see [23].

Proposition 4.9 ([11, 23]). For a nondegenerate progective variety X C PY, if X
is arithmetically Buchsbaum, then
deg X — 1
reg X < { codim X —‘ 1
We will introduce an invarinant evaluating the intermediate colomologies of the
projective varieties. Let X C PY be a projective scheme. A graded S-module
MY(X) = ®pezH (PY,Ix(£)), is called the deficiency module of X, which is a
generalization of the Hartshorne-Rao module for the curve case. Then we define
k(X) as the minimal nonnegative integer v such that m*M*(X) = 0 for 1 < i <
dim(X), see [17], if there exists. If not, we put k(X) = oco. It is known that the
numbers k(X)) are invariant in a liaison class, see [17].
Further, we define k(X) as the maxmal number k(X N V) for any complete
intersection V of PY with codim (X N V) = codim (X) + codim (V), possibly V =
Py,

Remark 4.10. In general, k(X)
dimensional if and only if k(X)

lently, k(X) = 0.

< k(X). X is locally Cohen-Macaulay and equi-
<oo. X

0o is ACM if and only if k(X) = 0, equiva-

Conjecture 4.11 ([19]). Let X be a nondegenerate irreducible reduced projective
variety in P over an algebraically closed field k. Then we have

deg(X) —1

X) < k(X),1}.
reg () < | B 2 (i 0).1)
Furthermore, assume that deg(X) is large enough. Then the equality holds only if

X is a divisor on a variety of minimal degree.

Theorem 4.12 ([18]). Let X be a nondegenerate irreducible reduced projective
variety in PX over an algebraically closed field k. Assume that X is not ACM.
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Then we have

) < | S

Furthermore, assume that deg(X) is large enough. Then the equality holds only if
X is a divisor on a rational ruled surface.

W + (k(X)—1)dim X + 1.

Theorem 4.13. Let C C IP’,ZCV be a mondegenerate projective curve over an alge-
braically closed field of char k = 0. Assume that C' is not ACM. Then

degC —1
< | — .
reg U < { codim C -‘ +kO)

Assume that deg C' > (codim C')? + 2codim C + 2. If the equality holds, then C' lies
on a rational ruled surface.

Proof. Let X = C' N H be a generic hyperplane section. Let m = reg X. Let
k = k(C). From the exact sequence
H(Ze)(—1) 3 HE(Ze) = HE(Zx) — HA(Ze)(—1) B HA(Zo) (- 1),
<h

1)
where h is a defining equation of H, we have h?(Z¢ (m 2)) 2(Ze(m—-1)) <--- <
0 and H'(Zc(m+k—1)) = h- Hl(Ic(m+k 2)) =---=hE-HY(Ze(m+k— 1)) =0.
Hence we have

degC —1
C< X+k-1<|—=—~ k(C).
regC s regd o+ {codimC-‘—’_ ©)
For the second part, we will use (4.14), which is a consequence of the theory
of 1-generic matrices [7]. Let (hg,:-- ,hs) be the h-vector of the one-dimensional

graded ring R. In other words, we write h; = dimg(R;) — dimg (R;—1) for all
nonnegative integers i, and s for the maximal integer such that hs # 0. Note that
ho=1,h1 =N, s=a(R)+1 and deg(X) = ho + --- + hs. Suppose that X does
not lie on a rational normal curve. By (4.14), we have that h; > hy + 1 for all
2<i<s—2,and hs_1 > hy. Thus we have

deg(X)—1  hy+---+hs
N N hq
s—3
N+1 N+1 hs
> 14— — 414+ =
= + N + -+ N + —I—N
_ (R)—2+h
a(R) —1
> —_—
> a(R)+ S

Since a(R) + 1 > (deg(X) — 1)/N, we see that a(R) < N + 1. Hence we have
deg(X)—1< N(a(R)+1) < N(N +2),
which contradicts the hypothesis. Now let C' be a nondegenerate projective curve.

Let X = C'N H be a generic hyperplane section. Since X is contained in a rational

normal curve Z in H(= PY). We have only to show there exists a surface Y

containing C' such that Y N H = Z. There is an isomorphism F(IZ /PN(Q)) =
k

I'(Zx/m(2)). Indeed, If there exists a hyperquadric @ such that X C @Q and Z ¢



8 CHIKASHI MIYAZAKI

Q, then X C ZNQ by Bezout Theorem. On the other hand, F(IC/PN(Q)) —
k

['(Zx,r(2)) is surjective. Indeed, let K be the kernel of H;Z¢(—1) - H!Zo. From
the exact sequence

I.Zc — TWIx — H'Ze(—1) 3 HiZo — H Ty,

we need to prove that [K], = 0. By Socle Lemma (4.15), a_(K) > a_ (HlZx) > 2.

Thus we see that Z is the intersection of the hyperquadrics containing X and
that Y’ is the intersection of the hyperquadrics of C. Since Y' N H = Z, there is
an irreducible components of Y/ such that YN H = Z. O

Lemma 4.14. ([24, (2.3)]) Assume that X is in uniform position. If X does not
lie on a rational normal curve, then h; > hy +1 for2 <i<s—2.

Example 1. There is a counterexample in case Let X a complete intersection
of type (2,2,4) in P}. In this case, regX = 6 and degX = 16, so regX =
[(deg X — 1)/codim X| + 1. However, X does not lie on a rational normal curve.
So we really need the condition on the degree deg(X) > N? + 2N + 2.

Example 2. Let C be a smooth non-hyperelliptic curve of genus g = rmp,(C) > 5.
Let C C PY~" be the canonical embedding. Then reg C' = [(deg C—1)/(g—2)]+1 =
4. In this case, C' is contained in a surface of minimal degree if and only if C is
either trigonal or plane quintic.

Lemma 4.15 (Socle Lemma [12]). Let S = k[Xo, -+, Xn] be the polynomial ring
over a field k of charateristic 0. For a graded S-module N, we define a_(N) =
min{i|[N]; # 0}. Let M (£ 0) be a finitely generated graded S-module. For a exact
sequence of graded S-modules

0K —>M-1)BM—c—o,
where h € Sy is a generic element. If K # 0, then a_(K) > a_([0: m]¢).

Corollary 4.16. Let C C P} be a space curve with mazimal regularity. Assume
that char(k) = 0, deg C > 10 and C' is not ACM. Then C is a divisor of either type
(a,a+2) or (a,a+ 3) on a smooth quadric surface.

Proof. The assertion follows immediately from (4.13) O

5. GENERIC HYPERPLANE SECTION OF PROJECTIVE CURVE IN POSITIVE
CHARACTERISTIC

In this section, we study the regularity bound of Castelnuovo-type for positive
characteristic case. In Section 4, we show that if a generic hyperplane section of
projective curve with its degree large enough has a maximal regularity, then the
zero-dimensional scheme lie on a rational normal curve in characteristic zero case.
We will describe how to extend this result to the positive characteristic case by the
classical method of Castelnuovo. There is a relationship between the monodromy
group of the projective curve and the configuration of the generic hyperplane section
of the curve, as following Rathmann [22]. Let C C ]P’,]j tland X C PY be again
a nondegenerate projective curve and its generic hyperplane section respectively.
Let M C C x (]P’fy 'H)* be the incidence correspondence parametrizing the pairs
(z,H) € M, that is, a point 2 of C and a hyperplane H of PkN+1 such that z is
contained in H. Since M is a P{-bundle over C' via the first projection, M is
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irreducible and reduced. By Bertini’s theorem, M is generically étale finite over
P = (PN*')* via the second projection. Thus the function field K (M) of M is
separable finite over K (P), in particular, K (M) is a simple extension of K(P). So
we fix a splitting field @ for this simple extension. Let G¢ be the Galois group
Gal(Q/K(P)). Then G¢ is a subgroup of the full symmetric group Sy and is called
the monodromy group of C' C P&, where d = deg(C). The following is a basic
result on the monodromy group of projective curve.

Proposition 5.1. Let X C PY be a generic hyperplane section of nondegenerate
projective curve C' C ]P’f:“.

(i) (See [1]). If char(k) = 0, then G¢ = Sq.

(ii) (See [22, (1.8)]). If either Go = Sq or Go = Ay, then X is in uniform position.
(iil) (See [22, (1.6)]). Let 1 <t < N 4+ 1. Gc¢ is t-transitive if and only if any t
points of X is linearly independent.

Proposition 5.2. (See [22, (2.5)]). Let X be a generic hyperplane section in PN of
a nondegenerate projective curve C of PNTL for N > 3. Let G¢ be the monodromy
group of C'. If X 1is not in uniform position, then either of the following holds:

(a) v(1) = 3, and G¢ is exactly 2-transitive.

(b) v(1) =2, v(2) >4, and G¢ is exactly 3-transitive.

(c) deg(C) = 11,12,23 or 24, and G¢ is the Mathieu group Myy, Mia, Mas, Moy
respectively. Moreover My1 and Mss are exactly 4-transitive and Mo and Moy are
ezactly 5-transitive.

Theorem 5.3 ([3, 20]). Let X C PY be a generic hyperplane section of a nonde-
generate projective curve for N > 3. Assume that X is not in uniform position and
deg(X) > N2 + 2N + 2. Then we have reg (X) < [(deg(X) —1)/N].

What we have to prove is that HO((’)PkN (t)) — H%(Ox(t)) is surjective, that is,
HY(Zx(t)) = 0, where t = [(deg(X) —1)/N] — 1.

Lemma 5.4. Under the condition of (5.3), lett = [(deg(X)—1)/N]—1. For any
fizxed point P € X, there exists a (possibly reducible) hypersurface F of degree t in
PY such that X N F = X\{P}.

Proof. So we will prove for the case N = 3 by the classical method. Since v(1) = 3,
we have v(2) > 7 and put v = v(2). For a point P of X, we fix 2 points @
and @2 in X\{P}. Then we take different 2-planes Ly, --- , L, containing the line
¢ = {(Q1,Q2) spanned by Q1 and Q2 such that the union Uf_;L; covers X. We
remark that @ > 3. Since each 2-plane contains exactly v points of X and the
line ¢ contains exactly 3 points of X, we see d = a(v — 3) + 3. We may assume
that P is contained in L,. Let b = [(v — 3)/2]. Since (X N Ly)\{P, Q1,Q2}
consists of exactly v — 3 points, there are 2-planes L}, --- , L} such that P ¢ L for
1 =1,---,b and the union U?ZlL;- of 2-planes covers (X N Ly)\{P,Q1,Q2}. By
taking F = (UZ'L;) U (Ub_, L)), we have (X N F) = X\{P} and the degree of the
union F of 2-planes is a+b—1. Thus we have only to show that (a—1)+[(v—3)/2] <
[((av —3a+3)—1)/3] — 1. The inequality (a—1)+ (v—3)/2 < (av—3a+2)/3—1
is equivalent to saying that (2a — 3)(v — 6) > 5, which is easily shown for v > 7
and a > 4. Moreover, the case v = 7 and a = 3 satisfies (a — 1) + [(v — 3)/2] =
[(av — 3a + 2)/3] — 1. Hence the assertion is proved. O

Acknowledgement. The author is grateful to Professor Ohbuchi and Professor
Komeda to give an opportunity to have a talk for the conference.
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